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Abstract

The energy of a Riemannianalmost-productstructureP is measuredby forming
the Dirichiet integral of the associatedGausssection y, and P is decreedharmonic
if y criticalizes the energy functional when restricted to the submanifold of sections
of the Grassmannbundle. Euler—Lagrangeequationsare obtained,and geometrically
transformedin the specialcasewhenP is totally geodesic.Theseare seento generalize
the Yang—Mills equations,and generalizationsof the self-duality and anti-self-duality
conditionsare suggested.Severalapplicationsare then described.In particular,it is
consideredwhetherintegrabilityof P is a necessaryconditionfor y to be harmonic.
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0. Introduction

A Riemannianalmost-product(AP) structureon a Riemanniann-manifold
(M, g) is an orthogonal (1, 1) tensor field P on M with P2 = 1 and P ~
±1; equivalently,a pair of non-trivial orthogonalcomplementarydistributions
(F,g) on M, theeigendistributionsof P. If therankofF is k, such a structure
is parametrizedby a section y of the Grassmannbundle it : GkM —~ M of
k-planes in TM: just define y(x) = F~.When M = lU~ andF is integrable,
the restriction of y to any leaf of the correspondingfoliation is the graph
of the Gaussmap for that leaf; we thereforerefer to y as the Gausssection
associatedto P. Since GkM has a natural Riemannianmetric relative to g
(viz, the direct sum of the (Levi-Civita) horizontal lift of g with the metric

inducedon the fibres by the usual0(n)-invariant metric on the Grassmannian
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Gk(EF~)),it is possibleto measurethe energy of y, and seek critical points
with respectto variationsthroughsections.Suchy arecalledharmonicsections
[171; the associatedP will therefore be called harmonicAP-structures.They
are characterizedby the following non-linear (quasi-linear)systemof second
orderPDEs,generalizingthe first order linear system VP = 0:

[P,V~VP] = 0 (0.1)

where V~Vdenotesthe rough Laplacian of (M,g) and [,] is the commu-
tator bracket. Equations (0.1) areelliptic, provided P satisfiesthe constraint
equation P2 = 1; they are derived in §1 below (seetheorem1.4).

In §2 we focus on the class of totally geodesic (t.g.) AP-structures,whose

defining condition is thatboth F and~ are t.g. planefields i.e. all geodesics
with initial vector in F (resp. ç) remain tangent to F (resp. ~) for all
time. (It should be noted that this in no way relatesto y being a t.g. map.)
If F or ~ is integrable, we have a Riemannian foliation with t.g. leaves,
examplesof which include: foliations of Lie groups by translatesof a fixed
Lie subgroup; Riemanniansubmersionswith t.g. fibres; the total spaceof a
completefibre bundle with connection,equippedwith a Kaluza—Klein metric
(see example3.12). However, t.g. AP-structureswhich are non-integrable(in
the senseof neither F nor ~ being integrable) are easily constructed.For

example,an invariant AP-structureP on a Lie group is t.g. with respectto
any bi-invariant metric, and if neither Fe nor cc is a subalgebra(where e
is the group identity), then P is non-integrable.More generally, invariant
AP-structureson a naturally reductive homogeneousRiemannian manifold

are t.g. (see example2.3). Non-integrableAP-structuresappearin classical
mechanics,as ‘non-holonomicsystemswith ideal constraints’ [2, p. 961; for
example,a ball rolling on an ‘absolutely rough’ plane (see example3.10). In

broaderterms, t.g. AP-structuresare analogousto almost-Kählerstructuresin
Hermitian geometry.Part of this analogyis basedon formal computationsin
the symmetricalgebraof Al, asopposedto its exterioralgebra;seefor example
proposition2.6.

The main purposeof this paper is to providegeometriccharacterizationsof
equations(0.1), andtwo aregiven in §3, in caseP is t.g. The first (theorem3.1)
involves the curvature tensorof (M, g). When viewed alongsidea curvature
irreducibility result (theorem2.2) it suggeststhat harmonict.g. AP-structures
are really rather strong generalizationsof parallel AP-structures.The second
involvesthe Nijenhuis tensorof N of P (see (2.2) for the definition), which
is a TM-valued2-form on M. The coderivative (or covariantdivergence)oN
is thereforea field of endomorphismsof M, andwe prove:

Theorem 3.5. A t.g. AP-structureis harmonicif andonly if ON is self-adjoint.
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This characterizationgeneralizesthe Yang—Mills equationsfor fibre bundles,
and for t.g. Riemannianfoliations of codimension4 suggestsa generaliza-
tion of the self-dualand anti-self-dualYang—Mills equations(theorem3.8).
Instrumentalto our geometrizationprocedureare generalizationsto arbitrary
AP-structuresof Codazzi’s equationsfor a submanifold (3.3) and Bianchi’s
identity for aprincipal bundleconnection(3.7). Finally, wegive someapplica-
tions of our results.In 3.9 we considerinvariant AP-structuresP on a Lie group
with bi-invariant metric, and observethat P is harmonicif P~is an automor-
phismof the Lie algebra.We also show the converseis false,by observingthat
on a compactsemi-simpleLie group any invariant AP-structureis harmonic
with respectto the Killing metric, providedF or ç is integrable.Example3.10

is an invariant AP-structureon the Lie group S0(3) x S0(3), representing
the constraintsin phasespaceof a sphererolling on another‘absolutelyrough’
sphere.We showthis AP-structureis harmonicpreciselywhen the two spheres
haveequalradii, in which casePc is an automorphism;in fact this is the only
casewhereeithereigendistributionis integrable.Perhaps,in the contextof Lie
groups, integrability (of F or ~) is a necessaryandsufficient condition for
harmonicity?This questionis resolvedby example3.11, which is a harmonic
t.g. AP-structureon S0(3) x S0(3) with neithereigendistributionintegrable.
Example 3.12 is non-homogeneous;we considerthe natural AP-structureon
the total spaceof the tangentbundle of a Riemannianmanifold. With respect
to the Sasakimetric,this structureis harmonicif andonly if the basemanifold
hasharmoniccurvature (cf. [19, Thm. 6.21).

It is a pleasureto thank BernardKay for improving my awarenessof classical
mechanics.

Conventions.Our curvatureconventionis: R(X, Y) = [V~, Vy] — V[x,y]. The
summationconventionis usedthroughout.

1. HarmonicAP-structures

Let G = 0(m), and let ~: 0(M) —~ M denote the principal G-bundleof
orthonormaltangentframesof (M, g). The Grassmannbundle it : GkM —4 M
may beconstructedby factoring~through 0(M)/H whereH = 0(k) x 0(n—
k); thus:

0(M)

N
GkM = 0(M)/H

/
M=0(M)/G
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The quotient map ç~: 0(M) --4 G~Mis a principal H-bundle. We write
TGkM = V ~ N whereV = kerdit andN is the c-imageof the Levi-Civita
horizontaldistribution on 0(M). There is an inducedsplitting of the differ-
ential of anysectiony, which we write:

dy = dvy + dhy.

If GkM is equippedwith the Riemannianmetric describedin §0, which we
shall refer to as the Kaluza—Kleinmetric, thenit is a Riemanniansubmersion,
andhenceIdhyI is constant.It thereforesufficesto considerthe vertical energy
functional:

Ev(y;U) = ~fIdvyI2d~, U cM relatively compact

wheredp~is the Riemannianvolume element.Moreover,since it hast.g. fibres
(cf. [16j), by [17] the Euler—Lagrangeequationsfor a critical point of E~’
constrainedto the submanifoldof sectionsC (it) reduceto

= TrV0d1~y= 0 (1.1)

where VV is the V-componentof the Levi-Civita connection of the Kaluza—
Klein metric. Harmonic map terminology [5] suggeststhat vertical tension
field is the appropriatenamefor z~’(y).Thus, a harmonicAP-structureP is
one for which the vertical tensionof y vanishes.

To achieveour aim in § 1 of expressing(1.1) as an equationin P (theorem
1.4), a moredetaileddescriptionof the geometryof the Grassmannbundleis
necessary.We notefirstly the existenceof a tautologicalAP-structureP in the
pullback it*TM --4 GkM; namely, if y E GkM thenP(y) is the involution of
T~(V)Mwhosematrix with respectto anyframe in ~‘(y) is

— (1k 0
P0—In 1

‘-‘

We note also the existenceof a canonicalisometric vector bundleembedding
i: V ~ it*E, where~ —~ M is the skew-symmetricsubbundleof End(TM).
The constructionof i goesas follows. Let g and I) be the Lie algebrasof G and
H respectively,and let ~ = I) ~ rn be the usual decomposition,viz, orthogonal
with respectto the Killing form. Elementsof rn are skew-symmetricmatrices
which anticommutewith P

0. The rn-componentof the Maurer—Cartanform of
G is H-equivariantand thereforeprojectsto a non-degeneratebundle-valued
1-form on the GrassmannianG/H, which may be transferredfibre-by-fibre to
GkM. The image of i is the vectorbundle associatedto ~ with fibre rn, which
will be denoted(m —~ GkM. It is characterizedas the subbundleof it~Ewhose
elementsanticommutewith P. Let ic : TN Sm denote the composition of i

with the horizontalprojectionof TN onto V.
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Lemma 1.1. For all E E TGkM we have K(E) = —~ P o VET, where the

covariant derivativeis the it-pullback ofthe Riemannianconnectionof g.
Proof Let w be the g-valuedLevi-Civita connection 1-form on 0(M). The
component~0m is H-equivariant,vanisheson kerd~,and its restriction to
kerd~is the rn-componentof the Maurer—Cartanform. Therefore, the projec-
tion of Wm to an Sm-valued1-form on GkM coincideswith K.

The bundle it~(End TM) —÷ GkM is associatedto the G-extensionit*0(M)
—~ GkM of the principal H-bundle ~. Let 75 : itt0(M) --4 91(m) denote the
G-equivariantlift of the section2; by definition P is the G-extensionof P

0. If
D denotesthe exterior covariantderivativefor w, andE E T0(M) is any lift
of E then

D7
5(~’)= d73(E) + [w(E),P] = [Wm(E),P1 = 2P.Wm(E)

sinceP10(M) = P
0 andelementsof rn anticommutewith P0. Projectionto

GkMyields

VET = -2Po~’c(E)

and the result follows sinceP~= P. LI

Proposition 1.2. If y ~ C(it) parametrizesthe AP-structureP, then

i(d
1~y(X))= —~PoVxP, VXE TM.

Proof Since P is the y-pullback of the tautologicalAP-structure2, and i

dcy = K o dy, the result follows on taking the y-pullbackof the lemma (using
ito~’ = id).

In orderto characterizethe vertical tensionfield, it is clear from (1. 1) that
we also needto computethe i-image of Vz~.The following formula is slightly

more general.

Lemma 1.3. If E E TGkM andF is a vectorfield on GkM then

K(VEF) = -P[P,VE(KF)] — ~P[P,R(it~E, it~F)]

where the connectionV and curvature tensor R on the right hand side are
thoseof (M, g), and on the left hand side is the Levi-Civita connectionofthe
Kaluza—Kleinmetric.

Proof Let (,) denotethe Kaluza—Klein metric. If L is a vertical vector field

on GkM, andE is extendedto a local vectorfield, then by [8, Ch. IV, Prop.
2.31

2 (VEF, L) = E.(F,L) + F.(E,L) - L.(E, F)
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-(E, [F,L]) - KF, [E,L]) + (L, [E,F]).

Since KIV is isometricand the restrictionof (,) to N is the horizontal lift of
g, it follows that (E,F) = g(it~E,ir~F)+ g(KE,lcF) etc. and therefore

2g(K(V~F),KL) = E.g(KF,KL) + F.g(KE,KL) — L.g(KE,KF)

—g(KE,K[F,L])--g(KF,K[E,L])+g(KL,K[E,F])

—L.g(it~E,it.F) — g(it~E,it~[F,Lj) — g(it~F,it~[E,L]).

We claim that eachof the three terms involving it,~ vanishes.This is clearly
so if at least one of E,F is vertical. If both E,F are horizontal, then since
VEF dependson1y on the valuesof F on a slice transverseto the fibres of it

we may assumethat bothE,F are it-projectible. The claim then follows from

the fact thatL is it-adaptedto the zero field on Al. To expandthe remaining
terms,use the metric propertyof V:

2g(K(VEF),KL) = g(2V~(KF)—dK(E,F),KL)

+g(dK(E,L),KF) + g(dK(F,L),lcE)

wheredK is the antisymmetrizationof Vic. Now theSm-componentof VE (KF)

is ~P[P,VE(KF)] and so

g(V~(KF),KL) = ~g(P[P,V~(KF)],KL)

Further,since K 1S the projection to GkM of Wm, the Sm-componentof dK is
the projection of the horizontal componentof dWm. The rn-componentof the
Structureeq. is

dWm = Qm [W,W]m

where Q is the Levi-Civita curvature2-form. Because[rn, m] C l~,the hori-
zontal componentof [w, (0] m vanishes.Since Qm is horizontal, it follows that

the Sm-componentof dic coincideswith the Sm-componentof the it*S~valued
2-form ittR:

g(dK(E,F),KL) = ~g(P[P,R(it~E,it~F)],KL) etc.

In particular g(dK(E,L),KF) = 0 = g(dK(F,L),KE) since L is vertical,

andthe proofof the lemmais complete. LI
It is now possiblecharacterizethe vertical tensionfield. We define t(P) =

i (r~(y)), which it is reasonableto call the tensionfield ofP.

Theorem 1.4. If P is anyRiemannianAP-structure then i(P) = ~ [P,V*VP]
where V~VP= -TrV2P.
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Proof SinceR is skew-symmetric,it follows from (1.1) andlemma 1.3 (pulled-

back by y) that

r(P) = Tr(loVVdVy) = ~~~TrP[P,V(lod0y)]

Now by proposition 1.2

t(P) = —~TrP[P,V(PoVP)] = -~TrP[P,(VP)2+PoV2P]

= ~[P,V~VP]

since (VP)2 commuteswith P. LI

It follows from 1.4 that P is harmonicprecisely when [P,V*VPI = 0. We
note that this equationwas obtainedby G.Valli as the condition for the loop
of gaugetransformationsdeterminedby P to be a closedgeodesic[151.

2. Totally geodesicAP-structures

To any Riemannian AP-structure may be associatedthe following tensor

field of type (2,1):

a(X,Y) = ~(VxP(PY)+VpxP(Y)) (2.1)

called the (total) second fundamental form, which vanishespreciselywhen P is
parallel. Let ct = S + N denotethe symmetric/antisymmetricdecomposition,
whereS is the symmetricsecondfundamentalform [13]:

S(X,Y) = ~(VxP(PY) + VyP(PX) + VpxP(Y) + VpyP(X))

andN is the Nijenhuis tensor [11]:

N(X,Y) = .~([x,Y] + [PX,PY]-P[PX,Y]—P[X,PY]). (2.2)

The t.g. AP-structuresarepreciselythosewith S 0.
Let F (resp. ~) be the eigendistributionof P with eigenvalue 1 (resp.

—l),andletp= ~(1+P):TM~Fandq= ~(1—P):TM~gbe
the projections.We reserveU, V, W (resp. A, B,C) to denote elementsor
local sectionsof F (resp. g); arbitrary tangentvectors or vector fields will
continueto be denotedby X, Y, Z. Local orthonormalframe fields on Al will
be denoted (E,: 1 ~ i ~ n); local orthonormalframingsof F and Q will be
denotedby (En:! ~ u ~ k) and (Ea:k + I ~ a ~ n) respectively.We write

c~IFx F = s~andcvlc x = ü

9, noting thataI(F x ~) ~ (cx F) = 0. Then

c~(U,V) = q(VuV) and ag(A,B) = p(VAB).

It follows that
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S~(U,V)= ~q(VuV+VvU)

S9(A,B) = ~P(VAB+VBA). (2.3)

Furthermore

N~-(U,V)= ~-q[U,V] and N9(A,B) = ~p[A,B]

are the integrability tensorsfor F andc respectively.The vectorfields

H~= Trc~ and H9 = Trc~ç

arethe meancurvaturesof F andg respectively.
We firstly show that the existenceof a t.g. AP-structure imposescertain

restrictionson (M, g), andderive a curvature irreducibility result analogous
to [6, Cor. 4.31 for almost-Kählerstructures.Thesourceof both is a curvature
identitygeneralizing[12, Thm. 3] for Riemanniansubmersionsto the situation
whereneitherof F,c is integrable.Let ~ denote the projectionof the Levi-
Civita connectioninto either of the vector bundles F, ~ —~ Al (the context
will indicatewhich), andalso the appropriateextensionto tensorproducts;for

example,c~ is a sectionof F* ® F* ® g andwe write

Vxar(U,V) ~

Furthermore,if U ~ F~it will be convenientto denoteby a.v,u: T~M—~ T~M
the self-adjoint extensionof the endomorphismdefinedon F~by c~,u(V)=

a.~r(U,V); thus:

c —~ F; c~r,u(A)= —p(VuA).

Lemma 2.1. Thefollowing identity holdsfor anyRiemannianAP-structure:

g(R(U,A)V,B) = ~

+ g(c~,u(A), (SF,v — Nr,~)B)

+ g(ac,A(U),(S9B— NOB)V).

Proof Summarizingthe calculations,contributionsto R(U, A) V aremadeas
follows:

g(VuV~J’çB)=

g(V~VuV,B) = g(~Aaj~(U,V),B),

g(V1u~]~B) = g((NF,v —Sjr,~) 0QFU(A),B)

+g(V, (Ng,B—SO,B)oag,A(U)) LI

Theorem 2.2. (1) A Riemannian manifold (Al, g) admits a t.g. AP-structure
only if not all sectional curvatures of (Al, g) are negative. If all sectional
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curvatures are strictly positive then at most one of F, g is integrable. (2) if P
is a t.g. AP-structure and [R, F] = 0 then P is parallel.

Proof If S 0 thenthe lemma implies

IUI2IAI2K(UAA) = g(R(U,A)A,U) = INF,u(A)12 + INO,A(U)12

whereK(UAA) is the sectional curvature of the 2-plane spanned by U andA.
This proves (1). If in addition [R,P] = 0 then R(X, Y) leavesinvariant the

eigendistributions of F; in particular, each K( U A A) vanishes.Thus N 0,
and hence ct 0. LI

Example2.3. Let Al be a Lie groupwith a bi-invariantmetric g (for example,
Al compact).TheLevi-Civita connectionis thencharacterizedon left-invariant
vectorfields by [7, p. 148]

VxY = ~[X,Y]

It follows immediatelyfrom (2.3) that any invariant RiemannianAP-structure
is t.g.

More generally,suppose(Al, g) is a naturally reductive homogeneousRie-
mannian manifold, relative to a subgroup K of isometrics.Then any K-
invariant AP-structureis t.g. For, a characterizationof such (M, g) is that
geodesicscoincide with orbits of 1-parametersubgroupsof K [1]; hencea
K-invariant planefield is automaticallyt.g. It is also well-known [14] that all
sectionalcurvaturesof (M, g) are non-negative.

For AP-structures,the analogueof the Kähler2-form in Hermitiangeometry
is the following quadraticdifferential:

p(X,Y) = g(PX,Y).

The symmetric algebra~*M of (Al, g) may be equippedwith operators d
5

~r-1~f ~ ~r~j and O~: c3~+lM—~ ~M where

d5~(x1,.. . , Xr) = (r — 1 )~~ V~~A(Xa(2), . . ,
aES,

c5sA(Xi,,Xr) = VE~2(Ej,Xj,,Xr)

In particular,the following result showsthat the 3-form d5p encodesthe same
informationas the symmetricsecondfundamentalform S.

Proposition 2.4. A RiemannianAP-structure is t.g. if and only if d5p = 0.
Precisely:

(a) d~p(F,F,F)= 0 = d5p (g,g,g)~
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rb,) d~p(F,F,g) = 0 if andonly if 5T = 0~
(c) d~p(F,g,c) =0 if and only if S

9 =0.

Proof We have

d~p(X,Y,Z) = V~p(Y,Z) + Vy,o(Z,X) + Vzp(X,Y)

= g(VxP(Y),Z) + g(VyP(Z),X) + g(VzP(X),Y).

But VPIF x F = 2~ and VPj~x c = —2c~g from which (a) follows
immediately.Furthermore

d~p(U,V,A) = g(VuF(V)+VvP(U),A)

= 4g(~(U,V) +t.~(V~U),A)= 8g(S~(U,V),A)

from which (b) follows; the verification of (c) goes similarly. LI

The symmetricLaplacianA~is defined

z1~A =

This operatoris symmetric on compactly-supportedforms, but not positive;

however,the minus sign guaranteesa Weitzenböck-typeformula.We look only
at A E ~

2M, in which casean associatedsymmetric endomorphismfield L is
definedg(LX, Y) = A(X, Y). Let Ric denotethe Ricci curvatureof (M, g),
and let RicL denotethe following symmetric2-covarianttensorfield:

RicL(X,Y) = g(R(X,E~)LE~,Y).

Theorem 2.5. Weitzenböck Formula for Quadratic Differentials. If 2 E c32M

then A~2= V*V2_r(2) where

F(2)(X,Y) = Ric(LX,Y)+Ric(X,LY)—2RicL(X,Y).

Proof A computationyields:

O~d~2(X, Y) = V*V2 (X, Y) — V~~2(Es, Y) — V~~2(F
1,X)

d5052(X,Y) = —V~E2(EE,Y)— V
2yE.A(E,,X).

Let usdefine

R(X,Y)2 = VxVyA— VyVx2 — V
1x,y12

Ric2(X,Y) = (R(X,E1)1)(E,,Y) = RicL(X,Y)—Ric(X,LY).

From the Ricci identity R(X, Y)2 = V~~A— V~X2 it thenfollows that

z1~2(X,Y)= V*V2(X,Y) + RicA(X,Y) + RicA(Y,X). LI
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Remark.The Hodge—deRhamLaplacianwas extendedto an operatorJLjc On
the entirecovarianttensoralgebraby A. Lichnerowicz [10], [4, Ch. 1, I]. For
A E ~2M the definition is ~ = V*V2 + [(A).

Our analogybetweent.g. AP-structuresandalmost-Kählerstructuresconcludes
with the following property.In contrastto the almost-Kählercase,when M is
closedthereis no converse,because4~is not positive.

Proposition2.6. If P is t.g. then p is harmonic (Asp = 0).

Proof For an arbitraryAP-structurewe have

d
5p(X,PX,PY) = -g(VxP(X) +VpxP(PX),Y)

andhence

&p(Y) = ~-d5p(E1,PE1,PY).

It follows from 2.4 that if P is t.g. thend5p 0 =

0sP andhenceA
5p = 0. LI

3. Harmonictotally geodesicAP-structures

WeitzenböckFormula 2.5 may be applied to the quadraticdifferential p
associatedto a RiemannianAP-structureF. From theorem 1.4 it thenfollows
that

t(P) = ~ [Ricp—~A~p,P].

We introducethe partial Ricci curvaturesdeterminedby P:

Ric~(X,Y)= g(R(X,E~)E~,Y)

Ricq(X,Y) = g(R(X,E~)E~,Y)

in termsof which

Ric = RicF + Ricç and Ricp = RicF - - Ricg

The following result is now an immediateconsequenceof proposition2.6.

Theorem 3.1. If P is a t.g. AP-structurethen r(P) = ~ [Ricp,P]. Thus P is
harmonicprecisely when any of the following equivalentcurvatureconditions
hold:

(1) [Ricp,P] =0;

(2) Ricp(F,g) = 0;

(3) Ric~(F,ç)= Ricg(F,c).
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Corollary 3.2. (See also [18, corollary 2.19].) If P defines a t.g. Rieman-
nian foliation, then -r(P) = ~ [Ric,P], the sign dependingon whetherthe
±1eigendistributionis integrable. P is harmonicprecisely when either of the
following equivalent conditions holds:

(1) [Ric,P] = 0;

(2) Ric(F,g) = 0.

In particular, if (Al, g) is Einstein then P is harmonic.

Proof 1fF is integrable,thenCodazzi’seq. [8, Ch. VII, Prop. 4.3] appliedto
the leaves yields RicF(F,G) = 0; otherwisesaid, Ricp(F,c) = —Ric(F,g).
Similarly, if c is integrable then Ricp(F,g) = Ric(F,g). The result then
follows from 3.1. LI

In the light of proposition 2.2(2), the condition [Ric,P] = 0 is probably
the strongestcurvatureinvariancethat could be expectedfor a t.g. Riemannian
foliation with non-integrablenormal bundle. The Gausssectionsof t.g. AP-
structureswith [R, F I = 0 areall zeroesof the vertical energyfunctional (see
proposition 1.2).

The proofof 3.2 usedCodazzi’seq. to computethe off-diagonal component
of the partial Ricci curvatures.When neitherof (F, G) is integrablethis is
no longer valid; however, it is possible to generalizeCodazzi’sEquation.The
proof is similar to that of lemma 2.1 and we omit the details.

Theorem 3.3. GeneralizedCodazzi Equation. For anyRiemannianAP-structure
we have

g(R(U,V)W,A) = g(~ur~(V,W)—~va~(U,W),A)

+ 2g(W~(N(U,V),A))

andan analogousequationfor g(R(A,B)C,U).

In the t.g. case,use of 3.3 to computethe partial Ricci curvatureswill yield
expressionsinvolving the coderivativesaN~(a c-valued I-form on F) and
ON9 (an F-valued1-form on ~). This suggestslooking at the full coderivative
ON. It is convenientto extendour notation as follows:

F —~ F; U ‘—~ c~r,u(B) and ~Q,U : c —~ c; A ‘—~ (~9,A(U).

Lemma 3.4. ThecomponentsofON are:

(1) g(ON(U),A) = g(~NF(U)+N(Hg,U),A)

(2) g(U,ON(A)) = g(U,~Ng(A)+N(Hy~A))

(3) g(ON(U), ~7) = ~g(N~,u,N~,v —S,~v)— g(aç,u,Ng,v)

(4) g(A,ON(B)) = ~g(NçA—Sç~,NçB)—g(NFA,oyy,B).
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Proof A routinecalculation. LI

Theorem 3.5. lf P is a t.g AP-structure then v(P) = ~ [(ON)~ — ON,P]
where (oN)f is the g-adjoint. Thefollowing equivalentintegrability conditions
are necessaryand sufficientfor P to be harmonic:

(1) ON is a self-adjointendomorphism field;

(2) g(ÔN~.-(U),A)= g(U,~Ng(A)).

Proof When S 0 the GeneralizedCodazziEquationimplies

~

~[Ricg,P](U,A)=Ricç(U,A) = —g(U,~Ng(A))—g(Nru,NgA).

It follows from theorem3.1 that~P) is thedifferenceof thesetwo expressions:

g(-r(P)U,A) = ~.[Ricp,P](U,A) = g(U,~Ng(A))—g(ÔN~(U),A)

andcriterion (2) is immediate.Fromlemma3.4 it follows that

g(z(P)U,A) g(U,ON(A))—g(ON(U),A)

= g(((ON)t —ON)U,A) = ~g([(ON)
1 —ON,P]U,A)

which establishesthe formulafor r (P). Criterion (1) follows by noting from
Lemma3.4 thatON is alreadysymmetricon F x F andg x c providedS 0.LI

Corollary 3.6. If P defines a t.g. Riemannian foliation, with leaves tangent to
F, then P is harmonicif andonly if ON

9 = 0.

Whenthet.g. Riemannianfoliation is the totalspaceof a principal fibre bundle
with connection,thenN9 is the curvature2-form (see [8, Ch. II, Cor. 5.3]),
and ON9 = 0 are the Yang—Mills equations.The special caseof self-dual,
or anti-self-dualconnectionsmay be generalizedas follows. For an arbitrary
RiemannianAP-structure,let ~U*(~)denotethe exterioralgebraof g. If c is
orientablethereis a Hodgestaroperator

® F -~ ~n_k_r(g) 0 F (0 ~ r ~ n — k)

definedin termsof thevolumeelementof g. Thereis thenthe characterization:

= (—1 )~)(~‘÷1)~ ~ (3.1)

If n — k = 4 thenc may be designatedself-dualor anti-self-dualaccordingas

iN9 = N9 or iN9 = —N9 (3.2)

The significanceof ±self-duality in Yang—Mills theory dependson Bianchi’s
Identity, which generalizesto AP-structuresas follows.
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Theorem 3.7. GeneralizedBianchi Identity. For anyRiemannianAP-structure
we have

g(dN~(U,V,W),A)= —cg(U,cs(N(~’çW),A))

whereC denotesthe cyclicsumover U, V~W. There is an analogousidentityfor
dN9.

Proof By Bianchi’s First Identity for R, the cyclic sum over U, V, W in the
GeneralizedCodazziEquation 3.3 yields

0 = ~ + 2Cg(U,a(N(k~W),A))

Since~ is symmetricand~uNF is skew-symmetric, it follows that

C (~uc~(V,W)—~u~(W,V))

2C(~
7uN

1(V,W))_2dN~(U,V,W). LI

Theorem 3.8. SupposeF definesa t.g. Riemannianfoliation of codimension4.
If the normalbundleis orientable and±self-dual, then P is harmonic.

Proof From (3.1) and (3.2) it follows that

= -idiNç =

But when N~ 0 the GeneralizedBianchi Identity (for N9) reducesto
dN9 = 0, and the result follows from 3.6. LI

Remark.Fromproposition 1.2 and (2.1) it follows that Id
0 ~ 2 = 21~ 2. There-

fore if P definesa t.g. Riemannianfoliation then ksl2 = Nd2, and in codi-
mension4 we can write

Ev(y,U) = jIN~I2d~+ flN~l2dJt.

By analogywith Yang—Mills theory, one would like to expressthe difference
of the two integralson the right handside as a characteristicnumberof the
normal bundle,or some other topological constant.However, apart from the
specialcaseof a fibre bundlewith connection,it is not obvioushow this could
be done,leavingusunableto infer in generalthat ±self-dualityof the normal

bundleimplies minimumenergyof the Gausssection.

Example 3.9. Let (Al, g) be a Lie group with bi-invariant metric. If P is also
bi-invariant (i.e. Fe is Ad-equivariant)then

[F,FIcF, [F,c]=0, [g,g]cg
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from which it follows that c~ 0, and henceVP = 0. Conversely, if P is
invariantandparallel, and Al connected,thenP is bi-invariant. So by (0.1)
harmonicAP-structureson Lie groupsgeneralizebi-invariant AP-structures.

If P is invariant, and Fe is a Lie algebraautomorphism,then [8, Ch. XI,
Prop. 2.1]

[F,F]cF, [F,g]cg, [G,G]cF. (3.3)

In particular,F is integrable.The curvaturetensoris R(X,Y) = —~ ad[X, Y]
(see [7, p. 148]) and therefore

Ric~(X,Y)=

Ric9(X, Y) = ~ g([X,Ea], [Y,Ea]). (3.4)

It follows from (3.3) and (3.4) that Ric(U,A) = 0, andhencefrom example
2.3 and theorem 3.2 (2) that P is harmonic.

Finally, supposeAl is compactsemi-simple,andg is the Killing metric. Then
(Al,g) is an Einstein manifold [8, Ch. X, Ex. 3.2]. Thereforeby theorem3.2
any invariant P with F or c integrableis harmonic. We note that such P are
not necessarilyLie algebraautomorphisms.

Example 3.10. Let S~be a sphereof radiuss, touchinga sphereS2 of radius
t. Assumethe centreof eachS~is fixed, say on the z-axis, and the spheres
are otherwisefree to rotate. The configurationspacemay be identified with
Al = 50(3) xSO(3), equippedwith the direct sumof the following multiples
of the Killing metric:

= —4s
2Tr(XY), (X,Y)

2 = —~t
2Tr(XY).

Let r = s/t. If the S
1 are assumed~absoluteIyrough’, then rotating S~forces

S2 to rotate in the following ways:

rotation of S1 rotation of S2

o aboutx-axis —rOaboutx-axis

O abouty-axis —rOabouty-axis

o about z-axis 0 about z-axis

Theseconstraintsgeneratethe following subspaceof the Lie algebra:

Fe = {(uei + ye2 + we3,ue1— rye2 — rwe3) : u,v,w ~

where(e1,e2,e3)is the standardbasisof w(3):

(0 1 0\ /0 0 1\ /0 0 0\
= ( —l 0 0 , e2 = f 0 0 0 ) , e3 = ~ 0 0 1 )(3.5)

\ 0 0 0) \—l 0 oJ \o —l 0)
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The orthogonalcomplementis

= {(aei + be2 + ce3,—r
2ae

1 + rbe2 + rce3) : a,b,cG

Orthonormalbases(E1,E2,E3) and (E4,E5,E6) of Fe andcc respectivelyare
as follows:

E1 = Vs2+ ~2 (e1,e1), E2 = (e2,—re2), E3 = (e3,—re3),

E4 r~+ ~2 (e1,—r
2e

1), F5 = (e2,re2), E6 = (e3,re3)

We note that Fe or c~is a subalgebraonly when r = 1, in which casethe
relations(3.3) hold, and Fe is a Lie algebraautomorphism.[The symmetric
Lie algebra (so(3) OSO(3),Fe,Pe)is isomorphicto the more usual (so(3) ~
so(3),Aso(3),cT)with a(X, Y) = (Y~X).j The correspondinginvariant AP-
structureP is thereforeharmonic (example3.9). In general,the partial Ricci
curvaturesare given by (3.4), whose computation (a routine expansionof
matrix brackets)yields

4RicF(V,B) = (1 —r
2)(ua + ~vb +

4 Ric
9(V,B) = (1— r

2)(ua + ~vb + ~wc).

Thereforeby theorem3.1 P is harmonic preciselywhen r = 1.

Example 3.11. Let (M,g) be as in example3.10, andlet (E
1 F6) be the

following orthonormalbasisof the Lie algebra:

E1 = (e1,0), E2 = 1 (e3,0), E3 = I (0,e2),

E4 = (e2,0), F5 = (0,e1), E6 = (0,e3)

with (e1,e2,e3)given by (3.5). We define

Fe = span{E1,E2,E3}, c~= span{E4,E5,E6},

which satisfy the relations

o�[F,F]cc, 0�[c,c]cF.

The correspondinginvariant AP-structureis thereforenon-integrable.A simple
computationof matrix bracketsin (3.4) yields

Ric~(V,B) 0 = Ricg(V,B)

andhenceby theorem 3.1 this AP-structureis harmonic.

Example 3.12. Let (Al, g) be the tangentbundleof a Riemannianmanifold
(M’, g’), equippedwith the Sasaki metric. The foliation of M by tangent
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spacesis a t.g. Riemannianfoliation [16]. Let F be the vertical distribution;
thenc is the Levi-Civita horizontaldistribution.Using [9, Thm. flit is easy
to computethe relevantpieceof the Ricci curvature:if x eAl andy,z E Al~
(the tangentspacecontainingx) then

Ric(yF(x),zd(x)) = ~O’R’(z)(x,y)

wherey~~’(x) E F~(resp. z9(x) ~ c~is the vertical lift of y (resp.horizontal
lift of z). By 3.2 therefore,this AP-structureis harmonicif and only if (Al’, g’)
hasharmoniccurvature:O’R’ 0 (e.g. if (Al’, g’) is an Einstein manifold of
dimension3 or more; seealso [4, Ch. 16]). From [9] it also follows that

Ric(y~(x),z~(x)) = ~g’(R’(x,y), R’(x, z))

andso (Al, g) is Einsteinif andonly if (Al’, g’) is flat. The integrabilitytensor
of c is

Nç(y4(x),x9(x)) = —~(R(y,z)x)~

Thereforeif dim M’ = 4 thenc is ±self-dualif andonly if R is ±self-dual,if
andonly if (M’, g’) is Ricci-flat andconformally half-flat [3].
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