LOURNAL OF
GEOMETRYAND $^{\text {G }}$ PHYSICS

A class of harmonic almost-product structures

C.M. Wood
Department of Mathematics, University of York, Heslington, York Y01 5DD, UK ${ }^{1}$

Received 13 August 1992; revised 8 April 1993

Abstract

The energy of a Riemannian almost-product structure P is measured by forming the Dirichlet integral of the associated Gauss section γ, and P is decreed harmonic if γ criticalizes the energy functional when restricted to the submanifold of sections of the Grassmann bundle. Euler-Lagrange equations are obtained, and geometrically transformed in the special case when P is totally geodesic. These are seen to generalize the Yang-Mills equations, and generalizations of the self-duality and anti-self-duality conditions are suggested. Several applications are then described. In particular, it is considered whether integrability of P is a necessary condition for γ to be harmonic.

Key words: harmonic section, Grassmann bundle, almost-product structure, totally geodesic, Nijenhuis tensor, Weitzenböck formula, Codazzi equation, Bianchi identity, Riemannian foliation
1991 MSC: 53C15, 58E20

0. Introduction

A Riemannian almost-product (AP) structure on a Riemannian n-manifold (M, g) is an orthogonal (1,1) tensor field P on M with $P^{2}=1$ and $P \neq$ ± 1; equivalently, a pair of non-trivial orthogonal complementary distributions $(\mathcal{F}, \mathcal{G})$ on M, the eigendistributions of P. If the rank of \mathcal{F} is k, such a structure is parametrized by a section γ of the Grassmann bundle $\pi: G_{k} M \rightarrow M$ of k-planes in $T M$: just define $\gamma(x)=\mathcal{F}_{x}$. When $M=\mathbb{R}^{n}$ and \mathcal{F} is integrable, the restriction of γ to any leaf of the corresponding foliation is the graph of the Gauss map for that leaf; we therefore refer to γ as the Gauss section associated to P. Since $G_{k} M$ has a natural Riemannian metric relative to g (viz. the direct sum of the (Levi-Civita) horizontal lift of g with the metric induced on the fibres by the usual $O(n)$-invariant metric on the Grassmannian

[^0]$G_{k}\left(\mathbb{R}^{n}\right)$), it is possible to measure the energy of γ, and seek critical points with respect to variations through sections. Such γ are called harmonic sections [17]; the associated P will therefore be called harmonic AP-structures. They are characterized by the following non-linear (quasi-linear) system of second order PDEs, generalizing the first order linear system $\nabla P=0$:
\[

$$
\begin{equation*}
\left[P, \nabla^{*} \nabla P\right]=0 \tag{0.1}
\end{equation*}
$$

\]

where $\nabla^{*} \nabla$ denotes the rough Laplacian of (M, g) and $[$,$] is the commu-$ tator bracket. Equations (0.1) are elliptic, provided P satisfies the constraint equation $P^{2}=1$; they are derived in $\S 1$ below (see theorem 1.4).

In $\$ 2$ we focus on the class of totally geodesic (t.g.) AP-structures, whose defining condition is that both \mathcal{F} and \mathcal{G} are t.g. plane fields i.e. all geodesics with initial vector in \mathcal{F} (resp. \mathcal{G}) remain tangent to \mathcal{F} (resp. \mathcal{G}) for all time. (It should be noted that this in no way relates to γ being a t.g. map.) If \mathcal{F} or \mathcal{G} is integrable, we have a Riemannian foliation with t.g. leaves, examples of which include: foliations of Lie groups by translates of a fixed Lie subgroup; Riemannian submersions with t.g. fibres; the total space of a complete fibre bundle with connection, equipped with a Kaluza-Klein metric (see example 3.12). However, t.g. AP-structures which are non-integrable (in the sense of neither \mathcal{F} nor \mathcal{G} being integrable) are easily constructed. For example, an invariant AP-structure P on a Lie group is t.g. with respect to any bi-invariant metric, and if neither \mathcal{F}_{e} nor \mathcal{G}_{e} is a subalgebra (where e is the group identity), then P is non-integrable. More generally, invariant AP-structures on a naturally reductive homogeneous Riemannian manifold are t.g. (see example 2.3). Non-integrable AP-structures appear in classical mechanics, as 'non-holonomic systems with ideal constraints' [2, p. 96]; for example, a ball rolling on an 'absolutely rough' plane (see example 3.10). In broader terms, t.g. AP-structures are analogous to almost-Kähler structures in Hermitian geometry. Part of this analogy is based on formal computations in the symmetric algebra of M, as opposed to its exterior algebra; see for example proposition 2.6.

The main purpose of this paper is to provide geometric characterizations of equations (0.1), and two are given in $\S 3$, in case P is t.g. The first (theorem 3.1) involves the curvature tensor of (M, g). When viewed alongside a curvature irreducibility result (theorem 2.2) it suggests that harmonic t.g. AP-structures are really rather strong generalizations of parallel AP-structures. The second involves the Nijenhuis tensor of N of P (see (2.2) for the definition), which is a $T M$-valued 2 -form on M. The coderivative (or covariant divergence) δN is therefore a field of endomorphisms of M, and we prove:

Theorem 3.5. A t.g. AP-structure is harmonic if and only if δN is self-adjoint.

This characterization generalizes the Yang-Mills equations for fibre bundles, and for t.g. Riemannian foliations of codimension 4 suggests a generalization of the self-dual and anti-self-dual Yang-Mills equations (theorem 3.8). Instrumental to our geometrization procedure are generalizations to arbitrary AP-structures of Codazzi's equations for a submanifold (3.3) and Bianchi's identity for a principal bundle connection (3.7). Finally, we give some applications of our results. In 3.9 we consider invariant AP-structures P on a Lie group with bi-invariant metric, and observe that P is harmonic if P_{e} is an automorphism of the Lie algebra. We also show the converse is false, by observing that on a compact semi-simple Lie group any invariant AP-structure is harmonic with respect to the Killing metric, provided \mathcal{F} or \mathcal{G} is integrable. Example 3.10 is an invariant AP-structure on the Lie group $S O(3) \times S O$ (3), representing the constraints in phase space of a sphere rolling on another 'absolutely rough' sphere. We show this AP-structure is harmonic precisely when the two spheres have equal radii, in which case P_{e} is an automorphism; in fact this is the only case where either eigendistribution is integrable. Perhaps, in the context of Lie groups, integrability (of \mathcal{F} or \mathcal{G}) is a necessary and sufficient condition for harmonicity? This question is resolved by example 3.11 , which is a harmonic t.g. AP-structure on $S O(3) \times S O(3)$ with neither eigendistribution integrable. Example 3.12 is non-homogeneous; we consider the natural AP-structure on the total space of the tangent bundle of a Riemannian manifold. With respect to the Sasaki metric, this structure is harmonic if and only if the base manifold has harmonic curvature (cf. [19, Thm. 6.2]).

It is a pleasure to thank Bernard Kay for improving my awareness of classical mechanics.

Conventions. Our curvature convention is: $R(X, Y)=\left[\nabla_{X}, \nabla_{Y}\right]-\nabla_{[X, Y]}$. The summation convention is used throughout.

1. Harmonic AP-structures

Let $G=O(m)$, and let $\xi: O(M) \rightarrow M$ denote the principal G-bundle of orthonormal tangent frames of (M, g). The Grassmann bundle $\pi: G_{k} M \rightarrow M$ may be constructed by factoring ξ through $O(M) / H$ where $H=O(k) \times O(n-$ k); thus:

The quotient map $\zeta: O(M) \rightarrow G_{k} M$ is a principal H-bundle. We write $T G_{k} M=\mathcal{V} \oplus \mathcal{H}$ where $\mathcal{V}=\operatorname{ker} d \pi$ and \mathcal{H} is the ζ-image of the Levi-Civita horizontal distribution on $O(M)$. There is an induced splitting of the differential of any section γ, which we write:

$$
d \gamma=d^{v} \gamma+d^{h} \gamma
$$

If $G_{k} M$ is equipped with the Riemannian metric described in $\S 0$, which we shall refer to as the Kaluza-Klein metric, then π is a Riemannian submersion, and hence $\left|d^{h} \gamma\right|$ is constant. It therefore suffices to consider the vertical energy functional:

$$
E^{v}(\gamma ; U)=\frac{1}{2} \int_{U}\left|d^{v} \gamma\right|^{2} d \mu, \quad U \subset M \text { relatively compact }
$$

where $d \mu$ is the Riemannian volume element. Moreover, since π has t.g. fibres (cf. [16]), by [17] the Euler-Lagrange equations for a critical point of E^{v} constrained to the submanifold of sections $\mathcal{C}(\pi)$ reduce to

$$
\begin{equation*}
\tau^{v}(\gamma)=\operatorname{Tr} \nabla^{v} d^{v} \gamma=0 \tag{1.1}
\end{equation*}
$$

where ∇^{v} is the \mathcal{V}-component of the Levi-Civita connection of the KaluzaKlein metric. Harmonic map terminology [5] suggests that vertical tension field is the appropriate name for $\tau^{v}(\gamma)$. Thus, a harmonic AP-structure P is one for which the vertical tension of γ vanishes.

To achieve our aim in $\S 1$ of expressing (1.1) as an equation in P (theorem 1.4), a more detailed description of the geometry of the Grassmann bundle is necessary. We note firstly the existence of a tautological AP-structure \mathcal{P} in the pullback $\pi^{*} T M \rightarrow G_{k} M$; namely, if $y \in G_{k} M$ then $\mathcal{P}(y)$ is the involution of $T_{\pi(y)} M$ whose matrix with respect to any frame in $\zeta^{-1}(y)$ is

$$
P_{o}=\left(\begin{array}{cc}
1_{k} & 0 \\
0 & -1_{n-k}
\end{array}\right)
$$

We note also the existence of a canonical isometric vector bundle embedding $l: \mathcal{V} \hookrightarrow \pi^{*} \mathcal{E}$, where $\mathcal{E} \rightarrow M$ is the skew-symmetric subbundle of $\operatorname{End}(T M)$. The construction of l goes as follows. Let \mathfrak{g} and \mathfrak{b} be the Lie algebras of G and H respectively, and let $\mathfrak{g}=\mathfrak{h} \oplus \mathrm{m}$ be the usual decomposition, viz. orthogonal with respect to the Killing form. Elements of m are skew-symmetric matrices which anticommute with P_{o}. The m-component of the Maurer-Cartan form of G is H-equivariant and therefore projects to a non-degenerate bundle-valued 1 -form on the Grassmannian G / H, which may be transferred fibre-by-fibre to $G_{k} M$. The image of l is the vector bundle associated to ζ with fibre \mathfrak{m}, which will be denoted $\mathcal{E}_{\mathrm{m}} \rightarrow G_{k} M$. It is characterized as the subbundle of $\pi^{*} \mathcal{E}$ whose elements anticommute with \mathcal{P}. Let $\kappa: T N \rightarrow \mathcal{E}_{\mathrm{m}}$ denote the composition of l with the horizontal projection of $T N$ onto \mathcal{V}.

Lemma 1.1. For all $E \in T G_{k} M$ we have $\kappa(E)=-\frac{1}{2} \mathcal{P} \circ \nabla_{E} \mathcal{P}$, where the covariant derivative is the π-pullback of the Riemannian connection of g.

Proof. Let ω be the g-valued Levi-Civita connection 1 -form on $O(M)$. The component ω_{m} is H-equivariant, vanishes on $\operatorname{ker} d \zeta$, and its restriction to $\operatorname{ker} d \xi$ is the m -component of the Maurer-Cartan form. Therefore, the projection of ω_{m} to an \mathcal{E}_{m}-valued 1 -form on $G_{k} M$ coincides with κ.

The bundle π^{*} (End $\left.T M\right) \rightarrow G_{k} M$ is associated to the G-extension $\pi^{*} O(M)$ $\rightarrow G_{k} M$ of the principal H-bundle ζ. Let $\tilde{\mathcal{P}}: \pi^{*} O(M) \rightarrow \mathrm{gl}(m)$ denote the G-equivariant lift of the section \mathcal{P}; by definition $\tilde{\mathcal{P}}$ is the G-extension of P_{o}. If D denotes the exterior covariant derivative for ω, and $\hat{E} \in T O(M)$ is any lift of E then

$$
D \tilde{\mathcal{P}}(\tilde{E})=d \tilde{\mathcal{P}}(\tilde{E})+[\omega(\tilde{E}), \tilde{\mathcal{P}}]=\left[\omega_{\mathrm{m}}(\tilde{E}), \tilde{\mathcal{P}}\right]=-2 \tilde{\mathcal{P}} . \omega_{\mathrm{m}}(\tilde{E})
$$

since $\tilde{\mathcal{P}} \mid O(M)=P_{o}$ and elements of \mathfrak{m} anticommute with P_{o}. Projection to $G_{k} M$ yields

$$
\nabla_{E} \mathcal{P}=-2 \mathcal{P} \circ \kappa(E)
$$

and the result follows since $\mathcal{P}^{-1}=\mathcal{P}$.
Proposition 1.2. If $\gamma \in \mathcal{C}(\pi)$ parametrizes the $A P$-structure P, then

$$
l\left(d^{v} \gamma(X)\right)=-\frac{1}{2} P \circ \nabla_{X} P, \quad \forall X \in T M
$$

Proof. Since P is the γ-pullback of the tautological AP-structure \mathcal{P}, and $l \circ$ $d^{v} \gamma=\kappa \circ d \gamma$, the result follows on taking the γ-pullback of the lemma (using $\pi \circ \gamma=\mathrm{id})$.

In order to characterize the vertical tension field, it is clear from (1.1) that we also need to compute the l-image of ∇^{v}. The following formula is slightly more general.

Lemma 1.3. If $E \in T G_{k} M$ and F is a vector field on $G_{k} M$ then

$$
\kappa\left(\nabla_{E} F\right)=\frac{1}{2} \mathcal{P}\left[\mathcal{P}, \nabla_{E}(\kappa F)\right]-\frac{1}{4} \mathcal{P}\left[\mathcal{P}, R\left(\pi_{*} E, \pi_{*} F\right)\right]
$$

where the connection ∇ and curvature tensor R on the right hand side are those of (M, g), and on the left hand side is the Levi-Civita connection of the Kaluza-Klein metric.

Proof. Let \langle,$\rangle denote the Kaluza-Klein metric. If L$ is a vertical vector field on $G_{k} M$, and E is extended to a local vector field, then by [8, Ch. IV, Prop. 2.3]

$$
2\left\langle\nabla_{E} F, L\right\rangle=E .\langle F, L\rangle+F .\langle E, L\rangle-L .\langle E, F\rangle
$$

$$
-\langle E,[F, L]\rangle-\langle F,[E, L]\rangle+\langle L,[E, F]\rangle
$$

Since $\kappa \mid \mathcal{V}$ is isometric and the restriction of \langle,$\rangle to \mathcal{H}$ is the horizontal lift of g, it follows that $\langle E, F\rangle=g\left(\pi_{*} E, \pi_{*} F\right)+g(\kappa E, \kappa F)$ etc. and therefore

$$
\begin{aligned}
& 2 g\left(\kappa\left(\nabla_{E} F\right), \kappa L\right)=E . g(\kappa F, \kappa L)+F . g(\kappa E, \kappa L)-L . g(\kappa E, \kappa F) \\
& \quad-g(\kappa E, \kappa[F, L])-g(\kappa F, \kappa[E, L])+g(\kappa L, \kappa[E, F]) \\
& \quad-L . g\left(\pi_{*} E, \pi_{*} F\right)-g\left(\pi_{*} E, \pi_{*}[F, L]\right)-g\left(\pi_{*} F, \pi_{*}[E, L]\right) .
\end{aligned}
$$

We claim that each of the three terms involving π_{*} vanishes. This is clearly so if at least one of E, F is vertical. If both E, F are horizontal, then since $\nabla_{E} F$ depends only on the values of F on a slice transverse to the fibres of π we may assume that both E, F are π-projectible. The claim then follows from the fact that L is π-adapted to the zero field on M. To expand the remaining terms, use the metric property of ∇ :

$$
\begin{aligned}
2 g\left(\kappa\left(\nabla_{E} F\right), \kappa L\right)= & g\left(2 \nabla_{E}(\kappa F)-d \kappa(E, F), \kappa L\right) \\
& +g(d \kappa(E, L), \kappa F)+g(d \kappa(F, L), \kappa E)
\end{aligned}
$$

where $d \kappa$ is the antisymmetrization of $\nabla \kappa$. Now the \mathcal{E}_{m}-component of $\nabla_{E}(\kappa F)$ is $\frac{1}{2} \mathcal{P}\left[\mathcal{P}, \nabla_{E}(\kappa F)\right]$ and so

$$
g\left(\nabla_{E}(\kappa F), \kappa L\right)=\frac{1}{2} g\left(\mathcal{P}\left[\mathcal{P}, \nabla_{E}(\kappa F)\right], \kappa L\right)
$$

Further, since κ is the projection to $G_{k} M$ of ω_{m}, the \mathcal{E}_{m}-component of $d \kappa$ is the projection of the horizontal component of $d \omega_{m}$. The m-component of the Structure eq. is

$$
d \omega_{\mathfrak{m}}=\Omega_{\mathfrak{m}}-[\omega, \omega]_{\mathfrak{m}}
$$

where Ω is the Levi-Civita curvature 2 -form. Because [$m, m] \subset \mathfrak{h}$, the horizontal component of $[\omega, \omega]_{\mathfrak{m}}$ vanishes. Since Ω_{m} is horizontal, it follows that the \mathcal{E}_{m}-component of $d \kappa$ coincides with the \mathcal{E}_{m}-component of the $\pi^{*} \mathcal{E}$-valued 2-form $\pi^{*} R$:

$$
g(d \kappa(E, F), \kappa L)=\frac{1}{2} g\left(\mathcal{P}\left[\mathcal{P}, R\left(\pi_{*} E, \pi_{*} F\right)\right], \kappa L\right) \quad \text { etc. }
$$

In particular $g(d \kappa(E, L), \kappa F)=0=g(d \kappa(F, L), \kappa E)$ since L is vertical, and the proof of the lemma is complete.

It is now possible characterize the vertical tension field. We define $\tau(P)=$ $l\left(\tau^{v}(\gamma)\right)$, which it is reasonable to call the tension field of P.

Theorem 1.4. If P is any Riemannian AP-structure then $\tau(P)=\frac{1}{4}\left[P, \nabla^{*} \nabla P\right]$ where $\nabla^{*} \nabla P=-\operatorname{Tr} \nabla^{2} P$.

Proof. Since R is skew-symmetric, it follows from (1.1) and lemma 1.3 (pulledback by γ) that

$$
\tau(P)=\operatorname{Tr}\left(l \circ \nabla^{v} d^{v} \gamma\right)=-\frac{1}{2} \operatorname{Tr} P\left[P, \nabla\left(l \circ d^{v} \gamma\right)\right]
$$

Now by proposition 1.2

$$
\begin{aligned}
\tau(P) & =-\frac{1}{4} \operatorname{Tr} P[P, \nabla(P \circ \nabla P)]=-\frac{1}{4} \operatorname{Tr} P\left[P,(\nabla P)^{2}+P \circ \nabla^{2} P\right] \\
& =\frac{1}{4}\left[P, \nabla^{*} \nabla P\right]
\end{aligned}
$$

since $(\nabla P)^{2}$ commutes with P.

It follows from 1.4 that P is harmonic precisely when $\left[P, \nabla^{*} \nabla P\right]=0$. We note that this equation was obtained by G.Valli as the condition for the loop of gauge transformations determined by P to be a closed geodesic [15].

2. Totally geodesic AP-structures

To any Riemannian AP-structure may be associated the following tensor field of type $(2,1)$:

$$
\begin{equation*}
\alpha(X, Y)=\frac{1}{4}\left(\nabla_{X} P(P Y)+\nabla_{P X} P(Y)\right) \tag{2.1}
\end{equation*}
$$

called the (total) second fundamental form, which vanishes precisely when P is parallel. Let $\alpha=S+N$ denote the symmetric/antisymmetric decomposition, where S is the symmetric second fundamental form [13]:

$$
S(X, Y)=\frac{1}{8}\left(\nabla_{X} P(P Y)+\nabla_{Y} P(P X)+\nabla_{P X} P(Y)+\nabla_{P Y} P(X)\right)
$$

and N is the Nijenhuis tensor [11]:

$$
\begin{equation*}
N(X, Y)=\frac{1}{8}([X, Y]+[P X, P Y]-P[P X, Y]-P[X, P Y]) \tag{2.2}
\end{equation*}
$$

The t.g. AP-structures are precisely those with $S \equiv 0$.
Let \mathcal{F} (resp. \mathcal{G}) be the eigendistribution of P with eigenvalue 1 (resp. $-1)$, and let $p=\frac{1}{2}(1+P): T M \rightarrow \mathcal{F}$ and $q=\frac{1}{2}(1-P): T M \rightarrow \mathcal{G}$ be the projections. We reserve U, V, W (resp. A, B, C) to denote elements or local sections of \mathcal{F} (resp. \mathcal{G}); arbitrary tangent vectors or vector fields will continue to be denoted by X, Y, Z. Local orthonormal frame fields on M will be denoted ($E_{i}: 1 \leqslant i \leqslant n$), local orthonormal framings of \mathcal{F} and \mathcal{G} will be denoted by ($E_{u}: 1 \leqslant u \leqslant k$) and ($E_{a}: k+1 \leqslant a \leqslant n$) respectively. We write $\alpha \mid \mathcal{F} \times \mathcal{F}=\alpha_{\mathcal{F}}$ and $\alpha \mid \mathcal{G} \times \mathcal{G}=\alpha_{\mathcal{G}}$, noting that $\alpha \mid(\mathcal{F} \times \mathcal{G}) \oplus(\mathcal{G} \times \mathcal{F})=0$. Then

$$
\alpha_{\mathcal{F}}(U, V)=q\left(\nabla_{U} V\right) \quad \text { and } \quad \alpha_{\mathcal{G}}(A, B)=p\left(\nabla_{A} B\right) .
$$

It follows that

$$
\begin{align*}
S_{\mathcal{F}}(U, V) & =\frac{1}{2} q\left(\nabla_{U} V+\nabla_{V} U\right) \\
S_{\mathcal{G}}(A, B) & =\frac{1}{2} p\left(\nabla_{A} B+\nabla_{B} A\right) \tag{2.3}
\end{align*}
$$

Furthermore

$$
N_{\mathcal{F}}(U, V)=\frac{1}{2} q[U, V] \quad \text { and } \quad N_{\mathcal{G}}(A, B)=\frac{1}{2} p[A, B]
$$

are the integrability tensors for \mathcal{F} and \mathcal{G} respectively. The vector fields

$$
H_{\mathcal{F}}=\operatorname{Tr} \alpha_{\mathcal{F}} \quad \text { and } \quad H_{\mathcal{G}}=\operatorname{Tr} \alpha_{\mathcal{G}}
$$

are the mean curvatures of \mathcal{F} and \mathcal{G} respectively.
We firstly show that the existence of a t.g. AP-structure imposes certain restrictions on (M, g), and derive a curvature irreducibility result analogous to [6, Cor. 4.3] for almost-Kähler structures. The source of both is a curvature identity generalizing [12, Thm. 3] for Riemannian submersions to the situation where neither of \mathcal{F}, \mathcal{G} is integrable. Let $\bar{\nabla}$ denote the projection of the LeviCivita connection into either of the vector bundles $\mathcal{F}, \mathcal{G} \rightarrow M$ (the context will indicate which), and also the appropriate extension to tensor products; for example, $\alpha_{\mathcal{F}}$ is a section of $\mathcal{F}^{*} \otimes \mathcal{F}^{*} \otimes \mathcal{G}$ and we write

$$
\bar{\nabla}_{X \alpha_{\mathcal{F}}}(U, V)=\bar{\nabla}_{X}\left(\alpha_{\mathcal{F}}(U, V)\right)-\alpha_{\mathcal{F}}\left(\bar{\nabla}_{X} U, V\right)-\alpha_{\mathcal{F}}\left(U, \bar{\nabla}_{X} V\right)
$$

Furthermore, if $U \in \mathcal{F}_{x}$ it will be convenient to denote by $\alpha_{\mathcal{F}, U}: T_{X} M \rightarrow T_{x} M$ the self-adjoint extension of the endomorphism defined on \mathcal{F}_{X} by $\alpha_{\mathcal{F}, U}(V)=$ $\alpha_{\mathcal{F}}(U, V)$; thus:

$$
\alpha_{\mathcal{F}, U} \mid \mathcal{G}: \mathcal{G} \rightarrow \mathcal{F} ; \alpha_{\mathcal{F}, U}(A)=-p\left(\nabla_{U} A\right)
$$

Lemma 2.1. The following identity holds for any Riemannian AP-structure:

$$
\begin{aligned}
g(R(U, A) V, B)= & -g\left(\bar{\nabla}_{A} \alpha_{\mathcal{F}}(U, V), B\right)-g\left(V, \bar{\nabla}_{U} \alpha_{\mathcal{G}}(A, B)\right) \\
& +g\left(\alpha_{\mathcal{F}, U}(A),\left(S_{\mathcal{F}, V}-N_{\mathcal{F}, V}\right) B\right) \\
& +g\left(\alpha_{\mathcal{G}, A}(U),\left(S_{\mathcal{G}, B}-N_{\mathcal{G}, B}\right) V\right)
\end{aligned}
$$

Proof. Summarizing the calculations, contributions to $R(U, A) V$ are made as follows:

$$
\begin{aligned}
g\left(\nabla_{U} \nabla_{A} V, B\right)= & -g\left(V, \bar{\nabla}_{U} \alpha_{\mathcal{G}}(A, B)\right) \\
g\left(\nabla_{A} \nabla_{U} V, B\right)= & g\left(\nabla_{A} \alpha_{\mathcal{F}}(U, V), B\right) \\
g\left(\nabla_{[U, A]} V, B\right)= & g\left(\left(N_{\mathcal{F}, V}-S_{\mathcal{F}, V}\right) \circ \alpha_{\mathcal{F}, U}(A), B\right) \\
& +g\left(V,\left(N_{\mathcal{G}, B}-S_{\mathcal{G}, B}\right) \circ \alpha_{\mathcal{G}, A}(U)\right)
\end{aligned}
$$

Theorem 2.2. (1) A Riemannian manifold (M, g) admits a t.g. AP-structure only if not all sectional curvatures of (M, g) are negative. If all sectional
curvatures are strictly positive then at most one of \mathcal{F}, \mathcal{G} is integrable. (2) If P is a t.g. AP-structure and $[R, P]=0$ then P is parallel.

Proof. If $S \equiv 0$ then the lemma implies

$$
|U|^{2}|A|^{2} K(U \wedge A)=g(R(U, A) A, U)=\left|N_{\mathcal{F}, U}(A)\right|^{2}+\left|N_{\mathcal{G}, A}(U)\right|^{2}
$$

where $K(U \wedge A)$ is the sectional curvature of the 2-plane spanned by U and A. This proves (1). If in addition $[R, P]=0$ then $R(X, Y)$ leaves invariant the eigendistributions of P; in particular, each $K(U \wedge A)$ vanishes. Thus $N \equiv 0$, and hence $\alpha \equiv 0$.

Example 2.3. Let M be a Lie group with a bi-invariant metric g (for example, M compact). The Levi-Civita connection is then characterized on left-invariant vector fields by [7, p. 148]

$$
\nabla_{X} Y=\frac{1}{2}[X, Y]
$$

It follows immediately from (2.3) that any invariant Riemannian AP-structure is t.g.
More generally, suppose (M, g) is a naturally reductive homogeneous Riemannian manifold, relative to a subgroup K of isometries. Then any K invariant AP-structure is t.g. For, a characterization of such (M, g) is that geodesics coincide with orbits of 1 -parameter subgroups of K [1]; hence a K-invariant plane field is automatically t.g. It is also well-known [14] that all sectional curvatures of (M, g) are non-negative.

For AP-structures, the analogue of the Kähler 2-form in Hermitian geometry is the following quadratic differential:

$$
\rho(X, Y)=g(P X, Y)
$$

The symmetric algebra $\Theta^{*} M$ of (M, g) may be equipped with operators d_{s} : $\mathfrak{\Xi}^{r-1} M \rightarrow \mathfrak{\Xi}^{r} M$ and $\delta_{s}: \mathfrak{\Im}^{r+1} M \rightarrow \mathfrak{\Xi}^{r} M$ where

$$
\begin{aligned}
& d_{s} \lambda\left(X_{1}, \cdots, X_{r}\right)=\frac{1}{(r-1)!} \sum_{\sigma \in S_{r}} \nabla_{X_{\sigma(1)}} \lambda\left(X_{\sigma(2)}, \cdots, X_{\sigma(r)}\right) \\
& \delta_{s} \lambda\left(X_{1}, \cdots, X_{r}\right)=-\nabla_{E_{1}} \lambda\left(E_{i}, X_{1}, \cdots, X_{r}\right)
\end{aligned}
$$

In particular, the following result shows that the 3 -form $d_{s} \rho$ encodes the same information as the symmetric second fundamental form S.

Proposition 2.4. A Riemannian AP-structure is t.g. if and only if $d_{s} \rho=0$. Precisely:
(a) $d_{s} \rho(\mathcal{F}, \mathcal{F}, \mathcal{F})=0=d_{s} \rho(\mathcal{G}, \mathcal{G}, \mathcal{G})$;
(b) $\quad d_{s} \rho(\mathcal{F}, \mathcal{F}, \mathcal{G})=0$ if and only if $S_{\mathcal{F}}=0$;
(c) $d_{s} \rho(\mathcal{F}, \mathcal{G}, \mathcal{G})=0$ if and only if $S_{\mathcal{G}}=0$.

Proof. We have

$$
\begin{aligned}
d_{s} \rho(X, Y, Z) & =\nabla_{X} \rho(Y, Z)+\nabla_{Y} \rho(Z, X)+\nabla_{Z} \rho(X, Y) \\
& =g\left(\nabla_{X} P(Y), Z\right)+g\left(\nabla_{Y} P(Z), X\right)+g\left(\nabla_{Z} P(X), Y\right) .
\end{aligned}
$$

But $\quad \nabla P \mid \mathcal{F} \times \mathcal{F}=2 \alpha_{\mathcal{F}}$ and $\nabla P \mid \mathcal{G} \times \mathcal{G}=-2 \alpha_{\mathcal{G}}$ from which (a) follows immediately. Furthermore

$$
\begin{aligned}
d_{s} \rho(U, V, A) & =g\left(\nabla_{U} P(V)+\nabla_{V} P(U), A\right) \\
& =4 g\left(\alpha_{\mathcal{F}}(U, V)+\alpha_{\mathcal{F}}(V, U), A\right)=8 g\left(S_{\mathcal{F}}(U, V), A\right)
\end{aligned}
$$

from which (b) follows; the verification of (c) goes similarly.
The symmetric Laplacian Δ_{s} is defined

$$
A_{s} \lambda=\delta_{s} d_{s} \lambda-d_{s} \delta_{s} \lambda
$$

This operator is symmetric on compactly-supported forms, but not positive; however, the minus sign guarantees a Weitzenböck-type formula. We look only at $\lambda \in \mathbb{S}^{2} M$, in which case an associated symmetric endomorphism field L is defined $g(L X, Y)=\lambda(X, Y)$. Let Ric denote the Ricci curvature of (M, g), and let Ric_{L} denote the following symmetric 2-covariant tensor field:

$$
\operatorname{Ric}_{L}(X, Y)=g\left(R\left(X, E_{i}\right) L E_{i}, Y\right)
$$

Theorem 2.5. Weitzenböck Formula for Quadratic Differentials. If $\lambda \in \mathbb{S}^{2} M$ then $\Delta_{s} \lambda=\nabla^{*} \nabla \lambda-\Gamma(\lambda)$ where

$$
\Gamma(\lambda)(X, Y)=\operatorname{Ric}(L X, Y)+\operatorname{Ric}(X, L Y)-2 \operatorname{Ric}_{L}(X, Y)
$$

Proof. A computation yields:

$$
\begin{aligned}
& \delta_{s} d_{s} \lambda(X, Y)=\nabla^{*} \nabla \lambda(X, Y)-\nabla_{E_{i}, X}^{2} \lambda\left(E_{i}, Y\right)-\nabla_{E_{i}, Y}^{2} \lambda\left(E_{i}, X\right) \\
& d_{s} \delta_{s} \lambda(X, Y)=-\nabla_{X, E_{i}}^{2} \lambda\left(E_{i}, Y\right)-\nabla_{Y, E_{i}}^{2} \lambda\left(E_{i}, X\right)
\end{aligned}
$$

Let us define

$$
\begin{aligned}
R(X, Y) \lambda & =\nabla_{X} \nabla_{Y} \lambda-\nabla_{Y} \nabla_{X} \lambda-\nabla_{[X, Y]} \lambda \\
\operatorname{Ric}_{\lambda}(X, Y) & =\left(R\left(X, E_{i}\right) \lambda\right)\left(E_{i}, Y\right)=\operatorname{Ric}_{L}(X, Y)-\operatorname{Ric}(X, L Y)
\end{aligned}
$$

From the Ricci identity $R(X, Y) \lambda=\nabla_{X, Y}^{2} \lambda-\nabla_{Y, X}^{2} \lambda$ it then follows that

$$
\Delta_{s} \lambda(X, Y)=\nabla^{*} \nabla \lambda(X, Y)+\operatorname{Ric}_{\lambda}(X, Y)+\operatorname{Ric}_{\lambda}(Y, X)
$$

Remark. The Hodge-de Rham Laplacian was extended to an operator $\mathcal{A}_{\text {Lic }}$ on the entire covariant tensor algebra by A. Lichnerowicz [10], [4, Ch. 1, I]. For $\lambda \in \mathbb{S}^{2} M$ the definition is $\Delta_{\text {Lic }} \lambda=\nabla^{*} \nabla \lambda+\Gamma(\lambda)$.

Our analogy between t.g. AP-structures and almost-Kähler structures concludes with the following property. In contrast to the almost-Kähler case, when M is closed there is no converse, because Δ_{s} is not positive.

Proposition 2.6. If P is $t . g$. then ρ is harmonic $\left(\Delta_{s} \rho=0\right)$.
Proof. For an arbitrary AP-structure we have

$$
d_{s} \rho(X, P X, P Y)=-g\left(\nabla_{X} P(X)+\nabla_{P X} P(P X), Y\right)
$$

and hence

$$
\delta_{s} \rho(Y)=\frac{1}{2} d_{s} \rho\left(E_{i}, P E_{i}, P Y\right)
$$

It follows from 2.4 that if P is t.g. then $d_{s} \rho=0=\delta_{s} \rho$ and hence $\Delta_{s} \rho=0$.

3. Harmonic totally geodesic AP-structures

Weitzenböck Formula 2.5 may be applied to the quadratic differential ρ associated to a Riemannian AP-structure P. From theorem 1.4 it then follows that

$$
\tau(P)=\frac{1}{2}\left[\operatorname{Ric}_{P}-\frac{1}{2} \Delta_{s} \rho, P\right]
$$

We introduce the partial Ricci curvatures determined by P :

$$
\begin{aligned}
\operatorname{Ric}_{\mathcal{F}}(X, Y) & =g\left(R\left(X, E_{u}\right) E_{u}, Y\right) \\
\operatorname{Ric}_{\mathcal{G}}(X, Y) & =g\left(R\left(X, E_{a}\right) E_{a}, Y\right)
\end{aligned}
$$

in terms of which

$$
\text { Ric }=\operatorname{Ric}_{\mathcal{F}}+\operatorname{Ric}_{\mathcal{G}} \quad \text { and } \quad \operatorname{Ric}_{P}=\operatorname{Ric}_{\mathcal{F}}-\operatorname{Ric}_{\mathcal{G}}
$$

The following result is now an immediate consequence of proposition 2.6.
Theorem 3.1. If P is a t.g. AP-structure then $\tau(P)=\frac{1}{2}\left[\operatorname{Ric}_{P}, P\right]$. Thus P is harmonic precisely when any of the following equivalent curvature conditions hold:
(I) $\left[\operatorname{Ric}_{P}, P\right]=0$;
(2) $\operatorname{Ric}_{P}(\mathcal{F}, \mathcal{G})=0$;
(3) $\operatorname{Ric}_{\mathcal{F}}(\mathcal{F}, \mathcal{G})=\operatorname{Ric}_{\mathcal{G}}(\mathcal{F}, \mathcal{G})$.

Corollary 3.2. (See also [18, corollary 2.19].) If P defines a t.g. Riemannian foliation, then $\tau(P)=\mp \frac{1}{2}[\mathrm{Ric}, P]$, the sign depending on whether the ± 1 eigendistribution is integrable. P is harmonic precisely when either of the following equivalent conditions holds:
(1) $[$ Ric, $P]=0$;
(2) $\operatorname{Ric}(\mathcal{F}, \mathcal{G})=0$.

In particular, if (M, g) is Einstein then P is harmonic.
Proof. If \mathcal{F} is integrable, then Codazzi's eq. [8, Ch. VII, Prop. 4.3] applied to the leaves yields $\operatorname{Ric}_{\mathcal{F}}(\mathcal{F}, \mathcal{G})=0$; otherwise said, $\operatorname{Ric}_{P}(\mathcal{F}, \mathcal{G})=-\operatorname{Ric}(\mathcal{F}, \mathcal{G})$. Similarly, if \mathcal{G} is integrable then $\operatorname{Ric}_{p}(\mathcal{F}, \mathcal{G})=\operatorname{Ric}(\mathcal{F}, \mathcal{G})$. The result then follows from 3.1.

In the light of proposition $2.2(2)$, the condition [Ric, P] $=0$ is probably the strongest curvature invariance that could be expected for a t.g. Riemannian foliation with non-integrable normal bundle. The Gauss sections of t.g. APstructures with $[R, P]=0$ are all zeroes of the vertical energy functional (see proposition 1.2).

The proof of 3.2 used Codazzi's eq. to compute the off-diagonal component of the partial Ricci curvatures. When neither of $(\mathcal{F}, \mathcal{G})$ is integrable this is no longer valid; however, it is possible to generalize Codazzi's Equation. The proof is similar to that of lemma 2.1 and we omit the details.

Theorem 3.3. Generalized Codazzi Equation. For any Riemannian AP-structure we have

$$
\begin{aligned}
g(R(U, V) W, A)= & g\left(\bar{\nabla}_{U} \alpha_{\mathcal{F}}(V, W)-\bar{\nabla}_{V} \alpha_{\mathcal{F}}(U, W), A\right) \\
& +2 g(W, \alpha(N(U, V), A))
\end{aligned}
$$

and an analogous equation for $g(R(A, B) C, U)$.
In the t.g. case, use of 3.3 to compute the partial Ricci curvatures will yield expressions involving the coderivatives $\bar{\delta} N_{\mathcal{F}}$ (a \mathcal{G}-valued 1 -form on \mathcal{F}) and $\bar{\delta} N_{\mathcal{G}}$ (an \mathcal{F}-valued 1 -form on \mathcal{G}). This suggests looking at the full coderivative δN. It is convenient to extend our notation as follows:

$$
\alpha_{\mathcal{F}, B}: \mathcal{F} \rightarrow \mathcal{F} ; U \mapsto \alpha_{\mathcal{F}, U}(B) \quad \text { and } \quad \alpha_{\mathcal{G}, U}: \mathcal{G} \rightarrow \mathcal{G} ; A \mapsto \alpha_{\mathcal{G}, A}(U)
$$

Lemma 3.4. The components of δN are:
(1) $g(\delta N(U), A)=g\left(\bar{\delta} N_{\mathcal{F}}(U)+N\left(H_{\mathcal{G}}, U\right), A\right)$
(2) $g(U, \delta N(A))=g\left(U, \bar{\delta} N_{\mathcal{G}}(A)+N\left(H_{\mathcal{F}}, A\right)\right)$

$$
\begin{equation*}
g(\delta N(U), V)=\frac{1}{2} g\left(N_{\mathcal{F}, U}, N_{\mathcal{F}, V}-S_{\mathcal{F}, V}\right)-g\left(\alpha_{\mathcal{G}, U}, N_{\mathcal{G}, V}\right) \tag{3}
\end{equation*}
$$

(4)

$$
g(A, \delta N(B))=\frac{1}{2} g\left(N_{\mathcal{G}, A}-S_{\mathcal{G}, A}, N_{\mathcal{G}, B}\right)-g\left(N_{\mathcal{F}, A}, \alpha_{\mathcal{F}, B}\right)
$$

Proof. A routine calculation.
Theorem 3.5. If P is a t.g. AP-structure then $\tau(P)=\frac{1}{2}\left[(\delta N)^{\dagger}-\delta N, P\right]$ where $(\delta N)^{\dagger}$ is the g-adjoint. The following equivalent integrability conditions are necessary and sufficient for P to be harmonic:
(1) δN is a self-adjoint endomorphism field;
(2) $g\left(\bar{\delta} N_{\mathcal{F}}(U), A\right)=g\left(U, \bar{\delta} N_{\mathcal{G}}(A)\right)$.

Proof. When $S \equiv 0$ the Generalized Codazzi Equation implies

$$
\begin{aligned}
& \frac{1}{2}\left[\operatorname{Ric}_{\mathcal{F}}, P\right](U, A)=\operatorname{Ric}_{\mathcal{F}}(U, A)=-g\left(\bar{\delta} N_{\mathcal{F}}(U), A\right)-g\left(N_{\mathcal{F}, U}, N_{\mathcal{G}, A}\right) \\
& \frac{1}{2}\left[\operatorname{Ric}_{\mathcal{G}}, P\right](U, A)=\operatorname{Ric}_{\mathcal{G}}(U, A)=-g\left(U, \bar{\delta} N_{\mathcal{G}}(A)\right)-g\left(N_{\mathcal{F}, U}, N_{\mathcal{G}, A}\right)
\end{aligned}
$$

It follows from theorem 3.1 that $\tau(P)$ is the difference of these two expressions:

$$
g(\tau(P) U, A)=\frac{1}{2}\left[\operatorname{Ric}_{P}, P\right](U, A)=g\left(U, \bar{\delta} N_{\mathcal{G}}(A)\right)-g\left(\bar{\delta} N_{\mathcal{F}}(U), A\right)
$$

and criterion (2) is immediate. From lemma 3.4 it follows that

$$
\begin{aligned}
g(\tau(P) U, A) & =g(U, \delta N(A))-g(\delta N(U), A) \\
& =g\left(\left((\delta N)^{\dagger}-\delta N\right) U, A\right)=\frac{1}{2} g\left(\left[(\delta N)^{\dagger}-\delta N, P\right] U, A\right)
\end{aligned}
$$

which establishes the formula for $\tau(P)$. Criterion (1) follows by noting from Lemma 3.4 that δN is already symmetric on $\mathcal{F} \times \mathcal{F}$ and $\mathcal{G} \times \mathcal{G}$ provided $S \equiv 0$. \square

Corollary 3.6. If P defines a t.g. Riemannian foliation, with leaves tangent to \mathcal{F}, then P is harmonic if and only if $\bar{\delta} N_{\mathcal{G}}=0$.

When the t.g. Riemannian foliation is the total space of a principal fibre bundle with connection, then $N_{\mathcal{G}}$ is the curvature 2-form (see [8, Ch. II, Cor. 5.3]), and $\bar{\delta} N_{\mathcal{G}}=0$ are the Yang-Mills equations. The special case of self-dual, or anti-self-dual connections may be generalized as follows. For an arbitrary Riemannian AP-structure, let $\mathfrak{H}^{*}(\mathcal{G})$ denote the exterior algebra of \mathcal{G}. If \mathcal{G} is orientable there is a Hodge star operator

$$
\bar{*}: \mathfrak{Y}^{r}(\mathcal{G}) \otimes \mathcal{F} \rightarrow \mathfrak{A}^{n-k-r}(\mathcal{G}) \otimes \mathcal{F} \quad(0 \leqslant r \leqslant n-k)
$$

defined in terms of the volume element of \mathcal{G}. There is then the characterization:

$$
\begin{equation*}
\bar{\delta}=(-1)^{(n-k)(r+1)+1} \bar{\star} \bar{d} \bar{*} \tag{3.1}
\end{equation*}
$$

If $n-k=4$ then \mathcal{G} may be designated self-dual or anti-self-dual according as

$$
\begin{equation*}
\bar{*} N_{\mathcal{G}}=N_{\mathcal{G}} \quad \text { or } \quad \bar{*} N_{\mathcal{G}}=-N_{\mathcal{G}} \tag{3.2}
\end{equation*}
$$

The significance of \pm self-duality in Yang-Mills theory depends on Bianchi's Identity, which generalizes to AP-structures as follows.

Theorem 3.7. Generalized Bianchi Identity. For any Riemannian AP-structure we have

$$
g\left(\bar{d} N_{\mathcal{F}}(U, V, W), A\right)=-\complement g(U, \alpha(N(V, W), A))
$$

where C denotes the cyclic sum over U, V, W. There is an analogous identity for $\bar{d} N_{G}$.

Proof. By Bianchi's First Identity for R, the cyclic sum over U, V, W in the Generalized Codazzi Equation 3.3 yields

$$
0=\mathrm{C} g\left(\bar{\nabla}_{U} \alpha_{\mathcal{F}}(V, W)-\bar{\nabla}_{U} \alpha_{\mathcal{F}}(W, V), A\right)+2 \mathrm{C} g(U, \alpha(N(V, W), A))
$$

Since $\bar{\nabla}_{U} S_{\mathcal{F}}$ is symmetric and $\bar{\nabla}_{U} N_{\mathcal{F}}$ is skew-symmetric, it follows that

$$
\begin{aligned}
& \mathrm{C}\left(\bar{\nabla}_{U} \alpha_{\mathcal{F}}(V, W)-\bar{\nabla}_{U} \alpha_{\mathcal{F}}(W, V)\right) \\
& \quad=2 \mathrm{C}\left(\bar{\nabla}_{U} N_{\mathcal{F}}(V, W)\right)=2 \bar{d} N_{\mathcal{F}}(U, V, W) .
\end{aligned}
$$

Theorem 3.8. Suppose P defines a t.g. Riemannian foliation of codimension 4. If the normal bundle is orientable and \pm self-dual, then P is harmonic.

Proof. From (3.1) and (3.2) it follows that

$$
\bar{\delta} N_{\mathcal{G}}=-\bar{*} \bar{d} \bar{\star} N_{\mathcal{G}}=\mp \bar{*} \bar{d} N_{\mathcal{G}}
$$

But when $N_{\mathcal{F}} \equiv 0$ the Generalized Bianchi Identity (for $N_{\mathcal{G}}$) reduces to $\bar{d} N_{\mathcal{G}}=0$, and the result follows from 3.6.

Remark. From proposition 1.2 and (2.1) it follows that $\left|d^{v} \gamma\right|^{2}=2|\alpha|^{2}$. Therefore if P defines a t.g. Riemannian foliation then $|\alpha|^{2}=\left|N_{\mathcal{G}}\right|^{2}$, and in codimension 4 we can write

$$
E^{v}(\gamma, U)=\int_{U}\left|N_{\mathcal{G}}^{+}\right|^{2} d \mu+\int_{U}\left|N_{\mathcal{G}}^{-}\right|^{2} d \mu
$$

By analogy with Yang-Mills theory, one would like to express the difference of the two integrals on the right hand side as a characteristic number of the normal bundle, or some other topological constant. However, apart from the special case of a fibre bundle with connection, it is not obvious how this could be done, leaving us unable to infer in general that \pm self-duality of the normal bundle implies minimum energy of the Gauss section.

Example 3.9. Let (M, g) be a Lie group with bi-invariant metric. If P is also bi-invariant (i.e. P_{e} is Ad-equivariant) then

$$
[\mathcal{F}, \mathcal{F}] \subset \mathcal{F}, \quad[\mathcal{F}, \mathcal{G}]=0, \quad[\mathcal{G}, \mathcal{G}] \subset \mathcal{G}
$$

from which it follows that $\alpha \equiv 0$, and hence $\nabla P=0$. Conversely, if P is invariant and parallel, and M connected, then P is bi-invariant. So by (0.1) harmonic AP-structures on Lie groups generalize bi-invariant AP-structures.

If P is invariant, and P_{e} is a Lie algebra automorphism, then [8, Ch. XI, Prop. 2.1]

$$
\begin{equation*}
[\mathcal{F}, \mathcal{F}] \subset \mathcal{F}, \quad[\mathcal{F}, \mathcal{G}] \subset \mathcal{G}, \quad[\mathcal{G}, \mathcal{G}] \subset \mathcal{F} \tag{3.3}
\end{equation*}
$$

In particular, \mathcal{F} is integrable. The curvature tensor is $R(X, Y)=-\frac{1}{4}$ ad $[X, Y]$ (see [7, p. 148]) and therefore

$$
\begin{align*}
\operatorname{Ric}_{\mathcal{F}}(X, Y) & =\frac{1}{4} g\left(\left[X, E_{u}\right],\left[Y, E_{u}\right]\right), \\
\operatorname{Ric}_{\mathcal{G}}(X, Y) & =\frac{1}{4} g\left(\left[X, E_{a}\right],\left[Y, E_{a}\right]\right) . \tag{3.4}
\end{align*}
$$

It follows from (3.3) and (3.4) that $\operatorname{Ric}(U, A)=0$, and hence from example 2.3 and theorem 3.2 (2) that P is harmonic.

Finally, suppose M is compact semi-simple, and g is the Killing metric. Then (M, g) is an Einstein manifold [8, Ch. X, Ex. 3.2]. Therefore by theorem 3.2 any invariant P with \mathcal{F} or \mathcal{G} integrable is harmonic. We note that such P are not necessarily Lie algebra automorphisms.

Example 3.10. Let S_{1} be a sphere of radius s, touching a sphere S_{2} of radius t. Assume the centre of each S_{i} is fixed, say on the z-axis, and the spheres are otherwise free to rotate. The configuration space may be identified with $M=S O(3) \times S O(3)$, equipped with the direct sum of the following multiples of the Killing metric:

$$
\langle X, Y\rangle_{1}=-\frac{1}{2} s^{2} \operatorname{Tr}(X Y), \quad\langle X, Y\rangle_{2}=-\frac{1}{2} t^{2} \operatorname{Tr}(X Y) .
$$

Let $r=s / t$. If the S_{i} are assumed 'absolutely rough', then rotating S_{1} forces S_{2} to rotate in the following ways:

rotation of S_{1}	rotation of S_{2}
θ about x-axis	$-r \theta$ about x-axis
θ about y-axis	$-r \theta$ about y-axis
θ about z-axis	θ about z-axis

These constraints generate the following subspace of the Lie algebra:

$$
\mathcal{F}_{e}=\left\{\left(u e_{1}+v e_{2}+w e_{3}, u e_{1}-r v e_{2}-r w e_{3}\right): u, v, w \in \mathbb{R}\right\}
$$

where $\left(e_{1}, e_{2}, e_{3}\right)$ is the standard basis of $\mathfrak{s o}(3)$:

$$
e_{1}=\left(\begin{array}{ccc}
0 & 1 & 0 \tag{3.5}\\
-1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \quad e_{2}=\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & 0 & 0 \\
-1 & 0 & 0
\end{array}\right), \quad e_{3}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & -1 & 0
\end{array}\right)
$$

The orthogonal complement is

$$
\mathcal{G}_{e}=\left\{\left(a e_{1}+b e_{2}+c e_{3},-r^{2} a e_{1}+r b e_{2}+r c e_{3}\right): a, b, c \in \mathbb{R}\right\}
$$

Orthonormal bases $\left(E_{1}, E_{2}, E_{3}\right)$ and $\left(E_{4}, E_{5}, E_{6}\right)$ of \mathcal{F}_{e} and \mathcal{G}_{e} respectively are as follows:

$$
\begin{aligned}
& E_{1}=\frac{1}{\sqrt{s^{2}+t^{2}}}\left(e_{1}, e_{1}\right), \quad E_{2}=\frac{1}{s \sqrt{2}}\left(e_{2},-r e_{2}\right), \quad E_{3}=\frac{1}{s \sqrt{2}}\left(e_{3},-r e_{3}\right), \\
& E_{4}=\frac{1}{r \sqrt{s^{2}+t^{2}}}\left(e_{1},-r^{2} e_{1}\right), \quad E_{5}=\frac{1}{s \sqrt{2}}\left(e_{2}, r e_{2}\right), \quad E_{6}=\frac{1}{s \sqrt{2}}\left(e_{3}, r e_{3}\right)
\end{aligned}
$$

We note that \mathcal{F}_{e} or \mathcal{G}_{e} is a subalgebra only when $r=1$, in which case the relations (3.3) hold, and P_{e} is a Lie algebra automorphism. [The symmetric Lie algebra $\left(\mathfrak{s o}(3) \oplus \mathfrak{s o}(3), \mathcal{F}_{e}, P_{e}\right)$ is isomorphic to the more usual $(\mathfrak{s o}(3) \oplus$ $\mathfrak{s o}(3), \Delta \mathfrak{s o}(3), \sigma)$ with $\sigma(X, Y)=(Y, X)$.] The corresponding invariant APstructure P is therefore harmonic (example 3.9). In general, the partial Ricci curvatures are given by (3.4), whose computation (a routine expansion of matrix brackets) yields

$$
\begin{aligned}
& 4 \operatorname{Ric}_{\mathcal{F}}(V, B)=\left(1-r^{2}\right)\left(u a+\frac{1}{2} v b+\frac{1}{2} w c\right) \\
& 4 \operatorname{Ric}_{\mathcal{G}}(V, B)=\left(1-r^{2}\right)\left(u a+\frac{3}{2} v b+\frac{3}{2} w c\right)
\end{aligned}
$$

Therefore by theorem $3.1 P$ is harmonic precisely when $r=1$.
Example 3.11. Let (M, g) be as in example 3.10 , and let $\left(E_{1}, \ldots, E_{6}\right)$ be the following orthonormal basis of the Lie algebra:

$$
\begin{array}{ll}
E_{1}=\frac{1}{s}\left(e_{1}, 0\right), & E_{2}=\frac{1}{s}\left(e_{3}, 0\right), \\
E_{3}=\frac{1}{t}\left(0, e_{2}\right), \\
E_{4}=\frac{1}{s}\left(e_{2}, 0\right), & E_{5}=\frac{1}{t}\left(0, e_{1}\right),
\end{array} E_{6}=\frac{1}{t}\left(0, e_{3}\right), ~
$$

with $\left(e_{1}, e_{2}, e_{3}\right)$ given by (3.5). We define

$$
\mathcal{F}_{e}=\operatorname{span}\left\{E_{1}, E_{2}, E_{3}\right\}, \quad \mathcal{G}_{e}=\operatorname{span}\left\{E_{4}, E_{5}, E_{6}\right\}
$$

which satisfy the relations

$$
0 \neq[\mathcal{F}, \mathcal{F}] \subset \mathcal{G}, \quad 0 \neq[\mathcal{G}, \mathcal{G}] \subset \mathcal{F}
$$

The corresponding invariant AP-structure is therefore non-integrable. A simple computation of matrix brackets in (3.4) yields

$$
\operatorname{Ric}_{\mathcal{F}}(V, B)=0=\operatorname{Ric}_{\mathcal{G}}(V, B)
$$

and hence by theorem 3.1 this AP-structure is harmonic.
Example 3.12. Let (M, g) be the tangent bundle of a Riemannian manifold (M^{\prime}, g^{\prime}), equipped with the Sasaki metric. The foliation of M by tangent
spaces is a t.g. Riemannian foliation [16]. Let \mathcal{F} be the vertical distribution; then \mathcal{G} is the Levi-Civita horizontal distribution. Using [9, Thm. 1] it is easy to compute the relevant piece of the Ricci curvature: if $x \in M$ and $y, z \in M_{x}$ (the tangent space containing x) then

$$
\operatorname{Ric}\left(y^{\mathcal{F}}(x), z^{\mathcal{G}}(x)\right)=\frac{1}{2} \delta^{\prime} R^{\prime}(z)(x, y)
$$

where $y^{\mathcal{F}}(x) \in \mathcal{F}_{x}$ (resp. $z^{\mathcal{G}}(x) \in \mathcal{G}_{x}$) is the vertical lift of y (resp. horizontal lift of z). By 3.2 therefore, this AP-structure is harmonic if and only if (M^{\prime}, g^{\prime}) has harmonic curvature: $\delta^{\prime} R^{\prime}=0$ (e.g. if (M^{\prime}, g^{\prime}) is an Einstein manifold of dimension 3 or more; see also [4, Ch. 16]). From [9] it also follows that

$$
\operatorname{Ric}\left(y^{\mathcal{F}}(x), z^{\mathcal{F}}(x)\right)=\frac{1}{4} g^{\prime}\left(R^{\prime}(x, y), R^{\prime}(x, z)\right)
$$

and so (M, g) is Einstein if and only if (M^{\prime}, g^{\prime}) is flat. The integrability tensor of \mathcal{G} is

$$
N_{\mathcal{G}}\left(y^{\mathcal{G}}(x), x^{\mathcal{G}}(x)\right)=-\frac{1}{2}(R(y, z) x)^{\mathcal{F}}
$$

Therefore if $\operatorname{dim} M^{\prime}=4$ then \mathcal{G} is \pm self-dual if and only if R is \pm self-dual, if and only if (M^{\prime}, g^{\prime}) is Ricci-flat and conformally half-flat [3].

References

[1] W.Ambrose and I. Singer, On homogeneous Riemannian manifolds, Duke Math. J. 25 (1958) 647-669.
[2] V. I. Arnold, Mathematical Methods of Classical Mechanics (Springer, New York, 1978).
[3] M. Atiyah, N.Hitchin and I. Singer, Self-duality in four-dimensional Riemannian geometry, Proc. Royal Soc. London A 362 (1978) 425-461.
[4] A. L. Besse, Einstein Manifolds (Springer, Berlin, 1987).
[5] J. Eells and L. Lemaire, Selected Topics in Harmonic Maps, C.B.M.S. Regional Conference Series 50 (AMS, Providence, RI, 1983).
[6] A. Gray, Curvature identities for Hermitian and almost Hermitian manifolds, Tôhoku Math. J. 28 (1976) 601-612.
[7] S. Helgason, Differential Geometry, Lie Groups, and Symmetric Spaces (Academic Press, New York, 1978).
[8] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Volumes 1 and 2 (Wiley, New York and London, 1963, 1966).
[9] O. Kowalski, Curvature of the induced Riemannian metric on the tangent bundle of a Riemannian manifold, J. reine angew. Math. 250 (1970) 124-129.
[10] A. Lichnerowicz, Propagateurs et commutateurs en relativite generale, I.H.E.S. Sci. Publ. Math. 10 (1961) 293-344.
[11] A. Naveira, A classification of Riemannian almost-product manifolds, Rend. Math. 7 (1982) 577-592.
[12] B. O'Neill, The fundamental equations of a submersion, Michigan Math. J. 13 (1966) 459-469.
[13] B. Reinhart, The second fundamental form of a plane field, J. Diff. Geom. 12 (1977) 619-627.
[14] H. Samelson, On curvature and characteristic of homogeneous spaces, Michigan Math. J. 5 (1958) 13-18.
[15] G. Valli, Some remarks on geodesics in gauge groups, and harmonic maps, J. Geom. Physics 4 (1987) 335-359.
[16] J. Vilms, Totally geodesic maps, J. Diff. Geom 4 (1970) 73-79.
[17] C. M. Wood, The Gauss section of a Riemannian immersion, J. London Math. Soc. 33 (1986) 157-168.
[18] C. M. Wood, Harmonic sections and Yang-Mills fields, Proc. London Math. Soc. 54 (1987) 544-558.
[19] C. M. Wood, Harmonic almost-complex structures, preprint (1993).

[^0]: 1 E-mail: CMW4@VAXA.YORK.AC.UK.

