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Abstract

The energy of a Riemannian almost-product structure P is measured by forming
the Dirichlet integral of the associated Gauss section y, and P is decreed harmonic
if y criticalizes the energy functional when restricted to the submanifold of sections
of the Grassmann bundle. Euler-Lagrange equations are obtained, and geometrically
transformed in the special case when P is totally geodesic. These are seen to generalize
the Yang-Mills equations, and generalizations of the self-duality and anti-self-duality
conditions are suggested. Several applications are then described. In particular, it is
considered whether integrability of P is a necessary condition for y to be harmonic.
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0. Introduction

A Riemannian almost-product (AP) structure on a Riemannian n-manifold
(M, g) is an orthogonal (1,1) tensor field P on M with P2 = 1 and P #
+1; equivalently, a pair of non-trivial orthogonal complementary distributions
(F,G) on M, the eigendistributions of P. If the rank of F is &, such a structure
is parametrized by a section y of the Grassmann bundle 7z : GyM — M of
k-planes in TM: just define y(x) = Fx. When M = R" and F is integrable,
the restriction of y to any leaf of the corresponding foliation is the graph
of the Gauss map for that leaf; we therefore refer to y as the Gauss section
associated to P. Since G; M has a natural Riemannian metric relative to g
(viz. the direct sum of the (Levi-Civita) horizontal lift of g with the metric
induced on the fibres by the usual O(n)-invariant metric on the Grassmannian
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G (R")), it is possible to measure the energy of y, and seek critical points
with respect to variations through sections. Such y are called harmonic sections
[17]; the associated P will therefore be called harmonic AP-structures. They
are characterized by the following non-linear (quasi-linear) system of second
order PDEs, generalizing the first order linear system VP = 0:

[P,V*'VP] =0 (0.1)

where V*V denotes the rough Laplacian of (M, g) and [,] is the commu-
tator bracket. Equations (0.1) are elliptic, provided P satisfies the constraint
equation P2 = 1; they are derived in §1 below (see theorem 1.4).

In §2 we focus on the class of totally geodesic (t.g.) AP-structures, whose
defining condition is that both F and G are t.g. plane fields i.e. all geodesics
with initial vector in F (resp. G ) remain tangent to F (resp. G ) for all
time. (It should be noted that this in no way relates to y being a t.g. map.)
If 7 or G is integrable, we have a Riemannian foliation with t.g. leaves,
examples of which include: foliations of Lie groups by translates of a fixed
Lie subgroup; Riemannian submersions with t.g. fibres; the total space of a
complete fibre bundle with connection, equipped with a Kaluza-Klein metric
(see example 3.12). However, t.g. AP-structures which are non-integrable (in
the sense of neither F nor G being integrable) are easily constructed. For
example, an invariant AP-structure P on a Lie group is t.g. with respect to
any bi-invariant metric, and if neither F, nor G, is a subalgebra (where ¢
is the group identity), then P is non-integrable. More generally, invariant
AP-structures on a naturally reductive homogeneous Riemannian manifold
are t.g. (see example 2.3). Non-integrable AP-structures appear in classical
mechanics, as ‘non-holonomic systems with ideal constraints’ [2, p. 96]; for
example, a ball rolling on an ‘absolutely rough’ plane (see example 3.10). In
broader terms, t.g. AP-structures are analogous to almost-Kahler structures in
Hermitian geometry. Part of this analogy is based on formal computations in
the symmetric algebra of M, as opposed to its exterior algebra; see for example
proposition 2.6.

The main purpose of this paper is to provide geometric characterizations of
equations (0.1), and two are given in §3, in case P is t.g. The first (theorem 3.1)
involves the curvature tensor of (M, g). When viewed alongside a curvature
irreducibility result (theorem 2.2) it suggests that harmonic t.g. AP-structures
are really rather strong generalizations of parallel AP-structures. The second
involves the Nijenhuis tensor of N of P (see (2.2) for the definition), which
is a TM-valued 2-form on M. The coderivative (or covariant divergence) o N
1s therefore a field of endomorphisms of A, and we prove:

Theorem 3.5. A t.g. AP-structure is harmonic if and only if SN is self-adjoint.
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This characterization generalizes the Yang-Mills equations for fibre bundles,
and for t.g. Riemannian foliations of codimension 4 suggests a generaliza-
tion of the self-dual and anti-self-dual Yang-Mills equations (theorem 3.8).
Instrumental to our geometrization procedure are generalizations to arbitrary
AP-structures of Codazzi’s equations for a submanifold (3.3) and Bianchi’s
identity for a principal bundle connection (3.7). Finally, we give some applica-
tions of our results. In 3.9 we consider invariant AP-structures P on a Lie group
with bi-invariant metric, and observe that P is harmonic if £, is an automor-
phism of the Lie algebra. We also show the converse is false, by observing that
on a compact semi-simple Lie group any invariant AP-structure is harmonic
with respect to the Killing metric, provided F or G is integrable. Example 3.10
is an invariant AP-structure on the Lie group SO(3) x SO(3), representing
the constraints in phase space of a sphere rolling on another ‘absolutely rough’
sphere. We show this AP-structure is harmonic precisely when the two spheres
have equal radii, in which case P, is an automorphism; in fact this is the only
case where either eigendistribution is integrable. Perhaps, in the context of Lie
groups, integrability (of F or G) is a necessary and sufficient condition for
harmonicity? This question is resolved by example 3.11, which is a harmonic
t.g. AP-structure on SO(3) x SO(3) with neither eigendistribution integrable.
Example 3.12 is non-homogeneous; we consider the natural AP-structure on
the total space of the tangent bundle of a Riemannian manifold. With respect
to the Sasaki metric, this structure is harmonic if and only if the base manifold
has harmonic curvature (cf. [19, Thm. 6.2]).

It is a pleasure to thank Bernard Kay for improving my awareness of classical
mechanics.

Conventions. Our curvature convention is: R(X,Y) = [V X Vy] —Vix,y)- The
summation convention is used throughout.

1. Harmonic AP-structures

Let G = O(m), and let £ : O(M) — M denote the principal G-bundle of
orthonormal tangent frames of (M, g). The Grassmann bundle 7 : G;M — M
may be constructed by factoring & through O(M)/H where H = O(k)xO(n—
k); thus:

O(M)
4
N

gl GeM = O(M)/H
/

M = O(M)/G
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The quotient map { : O(M) — G M is a principal H-bundle. We write
TGiM = V@ H where V = kerdn and H is the {-image of the Levi-Civita
horizontal distribution on O(M). There is an induced splitting of the differ-
ential of any section y, which we write:

dy = d’y + d"y.

If G, M is equipped with the Riemannian metric described in §0, which we
shall refer to as the Kaluza-Klein metric, then n is a Riemannian submersion,
and hence |d"y| is constant. It therefore suffices to consider the vertical energy
functional:

E°(y;U) = %/|d”y|2d/1, U C M relatively compact
U

where du is the Riemannian volume element. Moreover, since n has t.g. fibres
(cf. [16]), by [17] the Euler-Lagrange equations for a critical point of EV
constrained to the submanifold of sections C(x) reduce to

™ (y) = Trv¥d’y = 0 (1.1)

where V¥ is the V-component of the Levi-Civita connection of the Kaluza-
Klein metric. Harmonic map terminology [5] suggests that vertical tension
field is the appropriate name for t¥(y). Thus, a harmonic AP-structure P is
one for which the vertical tension of y vanishes.

To achieve our aim in §1 of expressing (1.1) as an equation in P (theorem
1.4), a more detailed description of the geometry of the Grassmann bundle is
necessary. We note firstly the existence of a tautological AP-structure P in the
pullback n*TM — G, M; namely, if y € G, M then P(y) is the involution of
Tr(yyM whose matrix with respect to any frame in {~!(y) is

(1l 0
PO_<O _ln—k>

We note also the existence of a canonical isometric vector bundle embedding
1:V — 7*&, where £ — M is the skew-symmetric subbundle of End(7TM).
The construction of 7 goes as follows. Let g and b be the Lie algebras of G and
H respectively, and let ¢ = & m be the usual decomposition, viz. orthogonal
with respect to the Killing form. Elements of m are skew-symmetric matrices
which anticommute with P,. The m-component of the Maurer—Cartan form of
G is H-equivariant and therefore projects to a non-degenerate bundle-valued
I-form on the Grassmannian G/H, which may be transferred fibre-by-fibre to
G M. The image of 1 is the vector bundle associated to { with fibre m, which
will be denoted &, — G, M. It is characterized as the subbundle of 7*& whose
elements anticommute with P. Let « : TN — &, denote the composition of i
with the horizontal projection of TN onto V.
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Lemma 1.1. For all E € TGyM we have k(E) = —3P o VgP, where the
covariant derivative is the n-pullback of the Riemannian connection of g.

Proof. Let w be the g-valued Levi-Civita connection 1-form on O(M). The
component w,, is H-equivariant, vanishes on kerd{, and its restriction to
kerd¢& is the m-component of the Maurer—-Cartan form. Therefore, the projec-
tion of wy, to an &y-valued 1-form on G, M coincides with k.

The bundle n* (End TM) — G M is associated to the G-extension n*O(M)
— Gy M of the principal H-bundle {. Let P : n*O(M) — gl(m) denote the
G-equivariant lift of the section P; by definition P is the G-extension of P,. If
D denotes the exterior covariant derivative for w, and £ € TO(M) is any lift
of E then

DP(E) = dP(E) + [w(E),P] = [wn(E),P] = —2P.wn(E)

since P|O(M) = P, and elements of m anticommute with P,. Projection to
G M yields

VEP = —2Pok(E)

and the result follows since P~! = P. O

Proposition 1.2. If y € C(n) parametrizes the AP-structure P, then
l(dvy(X))z—-é-POVXP, YXeTM.
Proof. Since P is the y-pullback of the tautological AP-structure P, and 1o

dy = Kk odvy, the result follows on taking the y-pullback of the lemma (using
oy = id ) O

In order to characterize the vertical tension field, it is clear from (1.1) that
we also need to compute the-i-image of VY. The following formula is slightly
more general.

Lemma 1.3. If E € TG, M and F is a vector field on G M then
K(VEF) = Y P[P,Ve(kF)] - s P[P,R(n.E, n.F)]

where the connection ¥V and curvature tensor R on the right hand side are
those of (M, g), and on the left hand side is the Levi-Civita connection of the
Kaluza—Klein metric.

Proof. Let {,) denote the Kaluza-Klein metric. If L is a vertical vector field
on Gy M, and E is extended to a local vector field, then by [8, Ch. IV, Prop.
2.3]

2(VeF,L) = E.(F,L) + F.(E,L) — L.(E,F)
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—(E,[F,L]) = (F, [E,L]) + (L, [E,F]).

Since x|V is isometric and the restriction of {,) to M is the horizontal lift of
g, it follows that (E, F) = g(n.E,n.F) + g(kE,xF) etc. and therefore
28(k(VegF),klL) = E.g(kF,kL) + F.g(kE, kL) - L.g(kE,kF)
—8kE,k[F,L])~g(kF,k[E,L]) + g(kL,k[E,F])
-Lg(nE, n.F)—gn.E n.[F,L])-g(n.F,n.[E L]).
We claim that each of the three terms involving n. vanishes. This is clearly
so if at least one of E, F is vertical. If both E, F are horizontal, then since
VEeF depends only on the values of £ on a slice transverse to the fibres of n
we may assume that both £, F' are m-projectible. The claim then follows from

the fact that L is m-adapted to the zero field on M. To expand the remaining
terms, use the metric property of V:

28(k(VEF), kL) = gQVg(kF)—dx(E,F), kL)
+g(dx(E,L),kF) + g(dx(F,L),kE)

where dx is the antisymmetrization of Vk. Now the &,-component of Vi (k F)
is 3P[P,Vg(kF)] and so

§(Ve(kF),kL) = ;g(P[P,Ve(xkF)],xL)

Further, since x is the projection to G M of wy, the &y-component of dk is
the projection of the horizontal component of d w,. The m-component of the
Structure eq. is

dwm = -Qm‘ [w,w]m

where 2 is the Levi-Civita curvature 2-form. Because [m,m] C b, the hori-
zontal component of [w, @ |, vanishes. Since Q,, is horizontal, it follows that
the &n-component of dx coincides with the £,-component of the 7n*£&-valued
2-form 7*R:

gldr(E,F),kL) = L g(P[P,R(n.E,n.F)], kL) etc.

In particular g(dx(E,L),kF) =0 = g(dx(F,L),xkE) since L is vertical,
and the proof of the lemma is complete. O

It is now possible characterize the vertical tension field. We define t(P) =
1(t" (7)), which it is reasonable to call the tension field of P.

Theorem 1.4. If P is any Riemannian AP-structure then t(P) = }1 [P,V*VP]
where V*VP = — Trv2P.
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Proof. Since R is skew-symmetric, it follows from (1.1) and lemma 1.3 (pulled-
back by y) that

©(P) = Tr(10V"d"y) = =3 TrP[P,V(10d"})]
Now by proposition 1.2
©(P) = ~L TrP[P,V(PoVP)] = -1 TrP[P,(VP)? + PoV?P]
= [P V'VP]

since (VP)? commutes with P. O

It follows from 1.4 that P is harmonic precisely when [P, V*VP] = 0. We
note that this equation was obtained by G.Valli as the condition for the loop
of gauge transformations determined by P to be a closed geodesic [15].

2. Totally geodesic AP-structures

To any Riemannian AP-structure may be associated the following tensor
field of type (2,1):

a(X,Y) = ; (VxP(PY) + VpxP(Y)) (2.1)

called the (total) second fundamental form, which vanishes precisely when P is
parallel. Let « = S + N denote the symmetric/antisymmetric decomposition,
where S is the symmetric second fundamental form [13]:

S(X,Y) = § (VxP(PY) + VyP(PX) + VpxP(Y) + VpyP(X))
and N is the Nijenhuis tensor [11]:
N(X,Y) = §([X,Y] + [PX,PY] - P[PX,Y]-P[X,PY]). (2.2)

The t.g. AP-structures are precisely those with S = 0.

Let F (resp. G) be the eigendistribution of P with eigenvalue 1 (resp.
~1),and let p = 3(1 + P): TM - Fand ¢ = }(1-P) : TM — G be
the projections. We reserve U,V, W (resp. 4,B,C ) to denote elements or
local sections of F (resp. G ); arbitrary tangent vectors or vector fields will
continue to be denoted by X, Y, Z. Local orthonormal frame fields on M will
be denoted (Ei:1 < i € n); local orthonormal framings of F and G will be
denoted by (E,:1 < u < k) and (E:k + 1 < a < n) respectively. We write
alF x F = ar and |G x G = ag, noting that a|(F xG) ® (G x F) = 0. Then

ar(U,V) = q(VyV) and ag(4,B) = p(V4B).

It follows that



32 C.M. Wood /Journal of Geometry and Physics 14 (1994) 25-42
SFUYV) = $q(VoV + VrU)
Sg(A,B) = }p(V4B + VzA). (2.3)

Furthermore
Ne(U,V) = 3q[U V] and Ng(4,B) = 1p[4,B]

are the integrability tensors for F and G respectively. The vector fields
Hr = Trary and Hg = Trag

are the mean curvatures of F and G respectively.

We firstly show that the existence of a t.g. AP-structure imposes certain
restrictions on (M, g), and derive a curvature irreducibility result analogous
to [6, Cor. 4.3] for almost-Kahler structures. The source of both is a curvature
identity generalizing [12, Thm. 3] for Riemannian submersions to the situation
where neither of F,G is integrable. Let V denote the projection of the Levi-
Civita connection into either of the vector bundles F,G — M (the context
will indicate which ), and also the appropriate extension to tensor products; for
example, o is a section of F* @ F* ® G and we write

Vxar(UV) = Vy(or(UV)) —ar(VxU, V) —ar (U VxV).

Furthermore, if U € Fx it will be convenient to denote by ary : TxM — T M
the self-adjoint extension of the endomorphism defined on F, by ary (V) =
ar (U, V); thus:

arylG:G— F, ary(d) = —p(VyA).
Lemma 2.1. The following identity holds for any Riemannian AP-structure:

g(RW,AV,B) = —g(Vsar(U,V),B) - g(V,Vyag(4,B))
+ g(aru(A4), (Sry — Nry)B)
+ g(aga(U), (Sgs — Ng,)V).

Proof. Summarizing the calculations, contributions to R(U, A)V are made as
follows:

g(VuVaV,B) = —g(V, Vyag(4, B)),
gV VyV,B) = g(Var(UV),B),
g(ViwaV.,B) = g((Ney —Sry)oary(4),B)
+ g(V, (Ng3 — Sg.p) 0 g 4(U)) O

Theorem 2.2. (1) A Riemannian manifold (M, g) admits a t.g. AP-structure
only if not all sectional curvatures of (M,g) are negative. If all sectional
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curvatures are strictly positive then at most one of F,G is integrable. (2) If P
is a t.g. AP-structure and [R, P] = O then P is parallel.

Proof. If § = 0 then the lemma implies
[UP|APK(UAA) = g(R(U,A)A,U) = |[Nry(A)|* + |Nga(U))?

where K (U A A) is the sectional curvature of the 2-plane spanned by U and A.
This proves (1). If in addition [R, P] = O then R(X,Y) leaves invariant the
eigendistributions of P; in particular, each K(U A 4) vanishes. Thus N = 0,
and hence o = 0. O

Example 2.3. Let M be a Lie group with a bi-invariant metric g (for example,
M compact). The Levi-Civita connection is then characterized on left-invariant
vector fields by [7, p. 148]

ViY = L[X,Y]

It follows immediately from (2.3) that any invariant Riemannian AP-structure
is t.g.

More generally, suppose (M, g) is a naturally reductive homogeneous Rie-
mannian manifold, relative to a subgroup K of isometries. Then any K-
invariant AP-structure is t.g. For, a characterization of such (A4, g) is that
geodesics coincide with orbits of 1-parameter subgroups of K [1]; hence a
K-invariant plane field is automatically t.g. It is also well-known [14] that all
sectional curvatures of (M, g) are non-negative.

For AP-structures, the analogue of the Kihler 2-form in Hermitian geometry
is the following quadratic differential:

p(X.Y) = g(PX,Y).

The symmetric algebra €*M of (M, g) may be equipped with operators d; :
&M —-&M and §,: 6"+ M — &M where

|
dSA (XI’.."XI') = m Z VXU(”A' (X0(2)>.'.,X0(r))
.UESr

632' (Xla"'er) = _VE,X (Ei’Xl"",Xr)

In particular, the following resuit shows that the 3-form d;p encodes the same
information as the symmetric second fundamental form S.

Proposition 2.4. A Riemannian AP-structure is t.g. if and only if dgp = 0.
Precisely:

(a) dip (F,F,F)=0=dp(G,6,G);
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() dsp (F,F,G) =0 ifand only if S = 0;
(¢) dip(F,G,G) =0 ifand only if Sg = 0.
Proof. We have
dip (X, Y,Z) = Vxp(Y,Z) + Vyp(Z,X) + Vzp(X,Y)
= g(VxP(Y),Z) + g(VYP(Z),X) + g(VzP(X),Y).

But VP|F xF = 2ar and VP|G xG = —2ag from which (a) follows
immediately. Furthermore

dsp (U, V,4) = g(VyP(V) + VyP(U), A4)
= 4g(ar (U, V) + ar(V,U), 4) = 8g(S(U, V), 4)

from which (b) follows; the verification of (c) goes similarly. O

The symmetric Laplacian 4; is defined
ASA. == 55 dsi - dS 551&

This operator is symmetric on compactly-supported forms, but not positive;
however, the minus sign guarantees a Weitzenbock-type formula. We look only
at A € @2M, in which case an associated symmetric endomorphism field L is
defined g(LX,Y) = A(X,Y). Let Ric denote the Ricci curvature of (M, g),
and let Ric; denote the following symmetric 2-covariant tensor field:

Ric, (X,Y) = g(R(X,E)LE,Y).

Theorem 2.5. Weitzenbock Formula for Quadratic Differentials. I/ 1 € S?M
then Al = V*VAi-1T(A) where

') (X,Y) = Ric(LX,Y) + Ric(X,LY) -2 Ric, (X, Y).

Proof. A computation yields:
O dA (X,Y) = V'VA(X,Y) = Vi xA(EpLY) — Vi yA(E, X)
di 04 (X,Y) = =VipgA(E,Y) ~ Vi A (EL X).

Let us define

R(X,Y)A
Ric; (X, Y)

VxVyi — V¥V — Vixyid
(R(X,E)X)(E;,Y) = Ricy(X,Y) — Ric(X,LY).

From the Ricci identity R(X,Y)A = V%4 — V$ 44 it then follows that

44 (X,Y) = V'VA(X,Y) + Rici(X,Y) + Ric; (Y, X). O
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Remark. The Hodge-de Rham Laplacian was extended to an operator Ay on
the entire covariant tensor algebra by A. Lichnerowicz [10], {4, Ch. 1, I]. For
A € GIM the definition is AyicA = V*VA + I'(1).

Our analogy between t.g. AP-structures and almost-Kahler structures concludes
with the following property. In contrast to the almost-Kahler case, when M is
closed there is no converse, because 4 is not positive.

Proposition 2.6. If P is t.g. then p is harmonic (4sp = 0).

Proof. For an arbitrary AP-structure we have

dsp (X,PX,PY) = —g(VxP(X) + VpxP(PX),Y)
and hence

sp(Y) = Ydop (E, PE;, PY).

It follows from 2.4 that if P is t.g. then ds;p = 0 = §;p and hence 4;p = 0.7

3. Harmonic totally geodesic AP-structures

Weitzenbock Formula 2.5 may be applied to the quadratic differential p
associated to a Riemannian AP-structure P. From theorem 1.4 it then follows
that

7(P) = §[Ricp—-4§4,p, P].
We introduce the partial Ricci curvatures determined by P:
Rics(X,Y) = g(R(X,E,)E,,Y)
Ricg(X,Y) = g(R(X,Ep)E, YY)
in terms of which
Ric = Ricr + Ricg and Ricp = Rics --Ricg

The following result is now an immediate consequence of proposition 2.6.

Theorem 3.1. If P is a t.g. AP-structure then 1(P) = % [ Ricp, P]. Thus P is
harmonic precisely when any of the following equivalent curvature conditions
hold:

(1) [Ricp,P] =0;

(2) Ricp(F,G) = 0;

(3) Ricr(F,G) = Ricg(F,G).
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Corollary 3.2. (See also [18, corollary 2.19].) If P defines a tg. Rieman-
nian foliation, then t©(P) = T-% [ Ric, P], the sign depending on whether the
+1 eigendistribution is integrable. P is harmonic precisely when either of the
Jollowing equivalent conditions holds:

() [Ric,P] =0

(2) Ric(F,G) =0.
In particular, if (M, g) is Einstein then P is harmonic.

Proof. If F is integrable, then Codazzi’s eq. [8, Ch. VII, Prop. 4.3] applied to
the leaves yields Ricr(F,G) = 0; otherwise said, Ricp(F,G) = —Ric(F,G).
Similarly, if G is integrable then Ricp(F,G) = Ric(F,G). The result then
follows from 3.1. O

In the light of proposition 2.2(2), the condition [ Ric, P] = 0 is probably
the strongest curvature invariance that could be expected for a t.g. Riemannian
foliation with non-integrable normal bundle. The Gauss sections of t.g. AP-
structures with [R, P] = 0 are all zeroes of the vertical energy functional (see
proposition 1.2).

The proof of 3.2 used Codazzi’s eq. to compute the off-diagonal component
of the partial Ricci curvatures. When neither of (F,G) is integrable this is
no longer valid; however, it is possible to generalize Codazzi’s Equation. The
proof is similar to that of lemma 2.1 and we omit the details.

Theorem 3.3. Generalized Codazzi Equation. For any Riemannian AP-structure
we have
g(RWU,VIW, A) = g(Vyar (V, W) =Vyas (U W), A)
+2g(W,a(N(U, V), 4))

and an analogous equation for g(R(A,B)C,U).

In the t.g. case, use of 3.3 to compute the partial Ricci curvatures will yield
expressions involving the coderivatives d N (a G-valued 1-form on F) and
ONg (an F-valued 1-form on G ). This suggests looking at the full coderivative
ON. It is convenient to extend our notation as follows:

ar B 1.7'-——*.7:; UHa}"U(B) and ag U Zg—+g; AHag,A(U).

Lemma 3.4. The components of 6N are:
(1) g(6N(U),A) = g(6Nr(U) + N(Hg,U), A)
(2) g(UJN(A4)) = g(U,0Ng(4) + N(Hr, A4))
(3) gNU)V) = $g(Neu,Ney —Sry) — glagu. Ngy)
(4) g(A,6N(B)) = $g(Ng4—Sga, Nogp)— g(Nx ,arp).
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Proof. A routine calculation. O

Theorem 3.5. If P is a rg AP-structure then t(P) = L[ (ON)T — N, P]
where (ON)' is the g-adjoint. The following equivalent integrability conditions
are necessary and sufficient for P to be harmonic:

(1) 6N is a self-adjoint endomorphism field;
(2) g@Nr(U),4) = g(U,dNg(4)).

Proof. When § = 0 the Generalized Codazzi Equation implies

L[ Ricg, P1(U,A) = Ricg(U,4) = —g(6N£(U),A) — g(Nr,y, Ng.4)

I [Ricg, P1(U,A) = Ricg(U,4) = —g(U,8Ng(A4)) — g(Nru, Ng.4).
It follows from theorem 3.1 that t(P) is the difference of these two expressions:

g(t(P)U,4) = L[Ricy, PI(U,4) = g(U,3Ng(4)) — g(6Nxz(U), A)
and criterion (2) is immediate. From lemma 3.4 it follows that

g(t1(P)U,A) = g(U,6N(A4)) - g(6N(U), A)

= g(((zSN)T -0N)U A) = %g([(JN)’r —0N,P1U, A)

which establishes the formula for 7(P). Criterion (1) follows by noting from
Lemma 3.4 that 6 NV is already symmetric on F x F and G x G provided S = 0.(,J

Corollary 3.6. If P defines a t.g. Riemannian foliation, with leaves tangent to
F, then P is harmonic if and only if dNg = 0.

When the t.g. Riemannian foliation is the total space of a principal fibre bundle
with connection, then Ny is the curvature 2-form (see [8, Ch. II, Cor. 5.31),
and 6Ng = 0 are the Yang-Mills equations. The special case of self-dual,
or anti-self~-dual connections may be generalized as follows. For an arbitrary
Riemannian AP-structure, let q*(G) denote the exterior algebra of G. If G is
orientable there is a Hodge star operator

WG F -UFKT(G)eF (0<r<n—k)
defined in terms of the volume element of G. There is then the characterization:
5 = (~1)yn-Rr+h+iggy (3.1)
If n — k& = 4 then G may be designated self-dual or anti-self-dual according as
*Ng = Ng or xNg = —Ng (3.2)

The significance of + self-duality in Yang-Mills theory depends on Bianchi’s
Identity, which generalizes to AP-structures as follows.
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Theorem 3.7. Generalized Bianchi Identity.  For any Riemannian AP-structure
we have

gUdNs(UV,W),4) = —¢C gU.a(N(V, W), 4))
where C denotes the cyclic sum over U, V,W. There is an analogous identity for
dNg.
Proof By Bianchi’s First Identity for R, the cyclic sum over U, V, W in the
Generalized Codazzi Equation 3.3 yields

0 =Ceg(Vuar(V,W) ~Vyar(W,V),4) + 2¢ g(U,a(N(V,W), 4))
Since VySr is symmetric and VN7 is skew-symmetric, it follows that

C (Vuar(V, W) —Vyar(W,V))

=2¢ (VuNz(V, W)) = 2dN=(U,V,W). O]

Theorem 3.8. Suppose P defines a t.g. Riemannian foliation of codimension 4.
If the normal bundle is orientable and + self-dual, then P is harmonic.

Proof. From (3.1) and (3.2) it follows that
SNg = —xd*Ng = F+dNg

§ut when Ny = 0 the Generalized Bianchi Identity (for Ng) reduces to
dNg = 0, and the result follows from 3.6. O

Remark. From proposition 1.2 and (2.1) it follows that [d?y|?> = 2{a*. There-
fore if P defines a t.g. Riemannian foliation then |a|?> = |Ng|?, and in codi-
mension 4 we can write

E0.U) = [INgPdu + [ NG Pdn.
U U

By analogy with Yang-Mills theory, one would like to express the difference
of the two integrals on the right hand side as a characteristic number of the
normal bundle, or some other topological constant. However, apart from the
special case of a fibre bundle with connection, it is not obvious how this could
be done, leaving us unable to infer in general that + self-duality of the normal
bundle implies minimum energy of the Gauss section.

Example 3.9. Let (M, g) be a Lie group with bi-invariant metric. If P is also
bi-invariant (i.e. P. is Ad-equivariant) then

[F.Fl1c F, [F.6]1=0, [G.6]C§
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from which it follows that « = 0, and hence VP = 0. Conversely, if P is
invariant and parallel, and M connected, then P is bi-invariant. So by (0.1)
harmonic AP-structures on Lie groups generalize bi-invariant AP-structures.

If P is invariant, and P, is a Lie algebra automorphism, then (8, Ch. XI,
Prop. 2.1]

[(F,FlCF, [F,G6]1Cg, (6,61 C F. (3.3)

In particular, F is integrable. The curvature tensoris R(X,Y) = —% ad[X,Y]
(see [7, p. 148]) and therefore

Ricr(X,Y) = ; g([X.E,], [Y. E,)),
Ricg (X, Y) = § g([X, E,1, [V, Eq1). (3.4)

It follows from (3.3) and (3.4) that Ric(U, A) = 0, and hence from example
2.3 and theorem 3.2 (2) that P is harmonic.

Finally, suppose M is compact semi-simple, and g is the Killing metric. Then
(M, g) is an Einstein manifold {8, Ch. X, Ex. 3.2]. Therefore by theorem 3.2
any invariant P with F or G integrable is harmonic. We note that such P are
not necessarily Lie algebra automorphisms.

Example 3.10. Let S; be a sphere of radius s, touching a sphere .S, of radius
t. Assume the centre of each S; is fixed, say on the z-axis, and the spheres
are otherwise free to rotate. The configuration space may be identified with
M = S0(3) xS0O(3), equipped with the direct sum of the following multiples
of the Killing metric:

(X,Y)) = =32 Tr(XY), (X,Y), = -3 Tr(XY).

Let r = s/t. If the S; are assumed ‘absolutely rough’, then rotating .S; forces
S, to rotate in the following ways:

rotation of S| rotation of .S,

f about x-axis —rf about x-axis
# about y-axis —r6 about y-axis
6 about z-axis 0 about z-axis

These constraints generate the following subspace of the Lie algebra:
Fe = {{ue, + ve, + wes, uey, — rve; — rwes) : u,v,w € R}

where (e;, e, e3) is the standard basis of so(3):

0 1 0 0 0 1 0 0 O
ep=|~-1 0 0], ea={1 0 0 0}, e3=[0 0 1](3.5)
0 0 0 -1 0 0 0 -1 0
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The orthogonal complement is
Ge = {(ae| + bey + ce3, —r?ae, + rbe; + rces) 1 a,b,c € R}

Orthonormal bases (Ey, E», E3) and (Ey, Es, Eg) of F. and G, respectively are
as follows:

1 1 1
Ei= ———1(e1,¢;), Er=-—=(e2,—rer), E3=—=(e3,—-re3),
i T v > 5 (€2 2) 3 s2(3 3)
1 1 |
Es= ———— (e, -t%*¢)), Es= ——= (ey,rey), E¢ = —— (e3,re3)
R V. V5 T

We note that F, or G, is a subalgebra only when r = 1, in which case the
relations (3.3) hold, and P, is a Lie algebra automorphism. [The symmetric
Lie algebra (s0(3) @ s0(3), F., P,) is isomorphic to the more usual (s0(3) @&
$0(3),450(3),0) with o(X,Y) = (Y, X).] The corresponding invariant AP-
structure P is therefore harmonic (example 3.9). In general, the partial Ricci
curvatures are given by (3.4), whose computation (a routine expansion of
matrix brackets) yields

4 Rics(V,B) = (1 —r*)(ua + $vb + twe),

4 Ricg(V,B) = (1 - r*)(ua + 3vb + 3we).
Therefore by theorem 3.1 P is harmonic precisely when r = 1.
Example 3.11. Let (M, g) be as in example 3.10, and let {(E,..., Es) be the
following orthonormal basis of the Lie algebra:

1 1 1
E, = 3 (e;,0), E; = S (e3,0), E; = ~1(0,e7),

1
1 1
7 (0,e1), E¢= n (0,e3)
with (e}, e, e3) given by (3.5). We define

Fe = span{E}, E;, E3}, G, = span{Ey, Es, Eg},

1
E4 = E (6290)5 E5 =

which satisfy the relations
04 [F,Flcg,  0#[G.dlCF

The corresponding invariant AP-structure is therefore non-integrable. A simple
computation of matrix brackets in (3.4) yields

Ricr(V,B) = 0 = Ricg(V, B)

and hence by theorem 3.1 this AP-structure is harmonic.

Example 3.12. Let (A, g) be the tangent bundle of a Riemannian manifold
(M', g"), equipped with the Sasaki metric. The foliation of M by tangent
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spaces is a t.g. Riemannian foliation [16]. Let F be the vertical distribution;
then G is the Levi-Civita horizontal distribution. Using [9, Thm. 1] it is easy
to compute the relevant piece of the Ricci curvature: if x € M and y,z € M,
{the tangent space containing x) then

Ric(y” (x),z9(x)) = 3 'R (2)(x,y)

where v7 (x) € F, (resp. z9(x) € Gy) is the vertical lift of y (resp. horizontal
lift of z). By 3.2 therefore, this AP-structure is harmonic if and only if (M’, g’)
has harmonic curvature: 'R’ = 0 (e.g. if (M’, g’) is an Einstein manifold of
dimension 3 or more; see also [4, Ch. 16]). From [9] it also follows that

Ric(y (x), 27 (x)) = } &' (R'(x,¥).R'(x,2))

and so (M, g) is Einstein if and only if (M’, ¢’) is flat. The integrability tensor
of G is

Ng (19 (x),x%(x)) = =4 (R(y,2)x)”

Therefore if dim M’ = 4 then G is Lself-dual if and only if R is *self-dual, if
and only if (M’, g') is Ricci-flat and conformally half-flat [3].
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